LIGO и Virgo объявили о 4 новых регистрациях гравитационных волн


Гравитационные волны и новая эра астрономии

Физики из международного научного проекта Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) официально подтвердили экспериментальное обнаружение гравитационных волн. Оно было получено спустя 100 лет после их теоретического предсказания, сделанного Альбертом Эйнштейном в рамках Общей теории относительности. Благодаря этому открытию астрономы получили новый метод изучения редких космических феноменов.

Согласно ОТО, пара массивных объектов при движении вокруг общего центра масс постепенно теряет энергию, испуская гравитационные волны. Объекты двойной системы медленно сближаются миллионы и даже миллиарды лет. По мере сокращения расстояния между ними этот процесс ускоряется. На заключительном этапе своей эволюции двойная система в считанные минуты схлопывается с образованием общего сверхмассивного тела. При этом испускается колоссальное количество энергии-массы и возникают особенно мощные гравитационные волны, которые предположительно можно зарегистрировать на Земле.

Гравитационные волны при слиянии двойных звёзд (графика: MIT).

Наиболее мощными источниками гравитационных волн считаются двойные системы, состоящие из нейтронных звёзд, пульсаров или чёрных дыр в любом сочетании. На протяжении ста лет эти предположения были лишь красивой теорией, для подтверждения которой требовалось детектировать хотя бы одну волну, искривляющую саму ткань пространства.

Существование гравитационных волн косвенно подтверждалось в 1970-х и 1980-х американским физиком Джозефом Хотоном Тейлором младшим. Вместе с Расселом Хулсом он обнаружил в 1974 году двойную систему, состоящую из пульсара на орбите вокруг нейтронной звезды. Они вычислили, что орбита пульсара очень медленно уменьшается, после чего предположили, что это происходит из-за потери энергии в форме гравитационных волн. За открытие двойной системы с пульсаром и описание её эволюции они получили Нобелевскую премию по физике в 1993 году. Однако научному сообществу по-прежнему требовались более весомые доказательства.

Если вы читали о фильме «Интерстеллар», то наверняка знаете, что его сценарий частично основывается на расчётах Кипа Торна – астрофизика, специалиста в области теории гравитации и эксперта по ОТО. Он был награждён медалью Альберта Эйнштейна в 2009 году, когда закончил свою работу в Калтехе.

Именно этот человек оказал ключевое влияние на проект строительства лазерно-интерферометрических гравитационно-волновых обсерваторий (LIGO), который был предложен в 1968 году Рэйнером Вайсом, преподавателем физики в MIT. Благодаря поддержке Кипа Торна и Рональда Древера (коллеги Торна по Калтеху) проект начал развиваться в восьмидесятых годах и вскоре нашёл своих инвесторов.

«В 1992 году было утверждено начальное финансирование LIGO. Проект потребовал самых больших инвестиций, которые мы когда-либо делали, – говорит астрофизик и директор NSF Франс Анна-Доминик Кордова. – Это был большой риск, но Национальный научный фонд понимает необходимость таких рисков. Мы поддерживаем фундаментальную науку и финансируем новаторов».

Спустя десять лет были построены две обсерватории и начались первые наблюдения. Долгое время гравитационные волны не удавалось обнаружить из-за их едва уловимого влияния. По расчётам волна средней мощности может искривить участок пространства километровых масштабов меньше чем на тысячную долю диаметра протона. Исследователи ждали астрономического события, которое породит особенно мощные гравитационные волны. Параллельно они совершенствовали оборудование, повышая чувствительность датчиков и систему их стабилизации. После очередного апгрейда в прошлом году детекторы LIGO стали способны фиксировать изменение относительной разницы длины плеч интерферометра в пределах 10-21 м.

Детекторы LIGO удалены друг от друга на 3002 километра. Они расположенных в Ливингстоне (штат Луизиана) и Хэнфорде (штат Вашингтон). Каждый из них содержит интерферометр Майкельсона внутри системы труб с глубоким вакуумом. В Ливингстоне установлен основной детектор. Его трубы L-образной формы диаметром 1,2 метра образуют плечи интерферометра длиной 4000 м. В Хэнфорде находится вспомогательный детектор вдвое меньшей длины. Каждое из плеч обоих интерферометров содержит дополнительные зеркала, благодаря которым формируется резонансная стоячая оптическая волна.

Схема двухлучевого интерферометра (изображение: MIT).

В проекте LIGO используется непрерывная оценка интерференционной картины. Луч лазера сначала расщепляется надвое полупрозрачным зеркалом. Затем оба луча отражаются каждый от своего дополнительного зеркала и попадают обратно на зеркало-делитель под одинаковыми углами, но с разных сторон. Два луча снова собираются в один и направляются в фотодетектор, расположенный перпендикулярно источнику.

Когда обсерватория находится в исходном состоянии, лазерные лучи после воссоединения гасят друг друга. Если любое из зеркал сместится хоть на доли световой волны, деструктивная интерференция исчезнет, а фотодетектор зафиксирует лазерный импульс. Благодаря такой схеме достигается оптическая регистрация сверхмалых сдвигов, которые способна вызвать мощная гравитационная волна.

Малейший сдвиг любого зеркала прекращает деструктивную интерференцию, и фотодетектор регистрирует свет (изображение: MIT).

14 сентября 2020 в 13:51 по московскому времени гравитационные волны были обнаружены на обоих детекторах LIGO. Сто пятьдесят дней потребовалось на анализ собранных данных и проверку результатов совместно со специалистами из аналогичного европейского проекта Virgo. В масштабном исследовании приняли участие более тысячи учёных из 90 университетов 15 стран. Россию в нём представляли Физический факультет МГУ и Институт прикладной физики РАН в Нижнем Новгороде.

Помимо едва уловимых гравитационных волн смещение зеркал в детекторе вызывают и более прозаичные эффекты, например — сейсмическая активность. Однако характер регистрируемого сигнала в этом случае будет другим. Весьма трудоёмким этапом эксперимента была математическая обработка результатов. Статистическая достоверность открытия на основном детекторе LIGO оценивается как 5,1 σ.

Детектор в Ливингстоне зафиксировал гравитационные волны на 7 мс раньше, чем детектор в Хэнфорде. На основании этого был сделан вывод, что их источник был расположен в Южной полусфере неба. Астрофизики пришли к заключению, что им стали две чёрные дыры в момент слияния. Такой сценарий эволюции двойной системы был предсказан теоретически, но никогда не наблюдался. Факт слияния подтверждает повышение частоты гравитационных волн за время их регистрации.

На основе полученных данных эксперты LIGO дали оценку параметров черных дыр, породивших гравитационные волны. Их масса составила 29 и 36 солнечных, а удаление от Земли в момент слияния – 1,3 миллиарда световых лет. При этом событии около трёх солнечных масс было преобразовано в гравитационные волны за считанные секунды. Их мощность на пике эмиссии превысила совокупный фон гравитационных волн в видимой части Вселенной в 50 раз.

«Наше наблюдение за гравитационными волнами выполняет амбициозную цель непосредственно обнаружить это неуловимое явление. Оно помогает нам лучше понять Вселенную и интеллектуальное наследие Эйнштейна на сотой годовщине Общей теории относительности», – говорит исполнительный директор Лаборатории LIGO Дэвид Х. Рейц (David H. Reitze).

Обсерватория LIGO (фото: caltech.edu).

Успех команды проекта LIGO подтверждает не только существование гравитационных волн и нашу возможность регистрировать их, но и позволяет создать новые инструменты для изучения невидимых в оптическом диапазоне массивных космических объектов. Строительство детекторов гравитационных волн может оказать такое же влияние на астрономию, как в своё время оказало появление радиотелескопов.

«Мы надеемся, что первая регистрация гравитационных волн ускорит конструкцию глобальной сети детекторов, которая позволит определять точное местоположение их источников и откроет новую эру астрономии», – говорит Дэвид Макклеллэнд (David McClelland), директор Центра Гравитационной Физики в австралийском Национальном университете.

Примечания

  1. 12
    ЖЭТФ, 2014, том 146, вып.4 (10), стр. 779-793
  2. Сипаров С. В.
    ,
    Самодуров В. А.
    Выделение составляющей излучения космического мазера, возникающей из-за гравитационно-волнового воздействия Архивная копия от 29 октября 2013 на Wayback Machine // Компьютерная оптика № 33 (1), 2009, с. 79.
  3. Сипаров С. В.
    A two-level atom in the field of a gravitational wave — on the possibility of parametric resonance // Astronomy & Astrophysics, № 416, 2004, с. 815—824) (англ.)
  4. Китайский университет Чжуншань объявил о запуске проекта по изучению гравитационных волн // «Жэньминь жибао», 15.02.2016
  5. КНР начала строительство по проекту изучения гравитационных волн // РИА, март 2016

Международное сотрудничество

Несмотря на то, что первоначальный импульс проекту задали США, обсерватория LIGO является по-настоящему международным проектом[27]. В получение научного результата внесли вклад в общей сложности более тысячи учёных мира из пятнадцати стран. В разработке детекторов и анализе данных участвовало более 90 университетов и научно-исследовательских институтов, существенный вклад также внесли около 250 студентов[29][30][25].

Создание LIGO для обнаружения гравитационных волн было предложено в 1980 году профессором физики MIT Райнером Вайссом, профессором теоретической физики Калтеха Кипом Торном и профессором физики того же института Рональдом Дривером[30][27].

Сеть детекторов LSC включает в себя интерферометры LIGO и детектор GEO600. Команда GEO включает учёных из Института гравитационной физики Общества Макса Планка (Институт Альберта Эйнштейна, AEI) и университета Лейбница в Ганновере в партнерстве с университетами Великобритании: Глазго, Кардиффа, Бирмингема и другими, а также университета Балеарских островов (англ.)русск. в Испании[30][25].

В состав коллаборации VIRGO входит более чем 250 физиков и инженеров, которые относятся к 19 различным европейским исследовательским группам: шесть из Национального центра научных исследований Франции; восемь из Национального института ядерной физики Италии; две из Нидерландов Nikhef (англ.)русск.; отделения физических наук Венгерской академии наук (Wigner RCP); группы POLGRAW из Польши и Европейской гравитационной обсерваторией (англ.)русск., занимающейся обеспечением работы детектора VIRGO недалеко от Пизы в Италии[30][25].

В начале 90-х гг. было принято решение о строительстве нескольких детекторов, и первыми в строй должны были войти относительно небольшие установки GEO600 в Европе и TAMA300 в Японии. Эти установки имели шанс обнаружить гравитационные волны, но на них прежде всего должны были обкатать технологии. Предполагалось, что основными претендентами на обнаружение будут LIGO и VIRGO[31].

Открытие стало возможным благодаря новым возможностям обсерватории второго поколения (Advanced LIGO), в финансовой поддержке которого лидирует Национальный научный фонд США. Финансирующие организации в Германии (Общество Макса Планка), в Великобритании (Совет по обеспечению науки и технологии (англ.)русск.) и Австралии (Австралийский совет по исследованиям) также внесли значительный вклад в проект. Некоторые из ключевых технологий, сделавших Advanced LIGO гораздо более чувствительной, были разработаны и испытаны в германо-британском проекте GEO[30][19]. Изначально американцы предложили Австралии построить в Южном полушарии антенну и согласились для этого предоставить всё оборудование, но Австралия отказалась из-за дороговизны содержания установки[32].

Значительные вычислительные ресурсы были предоставлены кластером AEI Atlas в Ганновере, лабораторией LIGO университета Сиракуз и университета Висконсина-Милуоки (англ.)русск.. Несколько университетов спроектировали, создали и испытали ключевые компоненты для Advanced LIGO: Австралийский национальный университет, Университет Аделаиды, Университет Флориды, Стэнфордский университет, Колумбийский университет в Нью-Йорке, Университет штата Луизиана[30][25]. Оборудование установок содержит в себе комплектующие из множества стран. Так, на LIGO стоят немецкие лазеры, часть зеркал делалась в Австралии и т.д[33].

С инженерной точки зрения для реализации технологий по обнаружению гравитационных волн требовалось преодоление множества трудностей. Например, «чисто механически» необходимо повесить массивные зеркала на подвесе, который висит на другом подвесе, тот на третьем подвесе и так далее — и всё для того, чтобы максимально избавиться от посторонней вибрации. Другим примером инструментальных проблем является оптическая: чем мощнее луч, циркулирующий в оптической системе, тем более слабое смещение зеркал можно будет заметить фотодатчиком. Для компенсации эффекта в 2000-х годах была запущена исследовательская программа, включающая исследователей из США и Австралии. В Западной Австралии была сконструирована установка длиной 80 метров, призванная смоделировать воздействие мощного луча на систему линз и зеркал, а также избавиться от этого воздействия[27][34][19].

Вклад советских и российских учёных

  • На астрофизические явления как на источник гравитационных волн впервые обратил внимание в 1948 году академик В. А. Фок, который тогда же сделал оценки для мощности гравитационного излучения Юпитера[35][36].
  • Идея использовать лазерные интерферометры для поиска гравитационных волн впервые была предложена в 1962 году М. Е. Герценштейном и В. А. Пустовойтом в СССР[33][32]. Однако считается, что их публикация не была замечена на западе и не повлияла на развитие реальных проектов[27].
  • Участие В. Б. Брагинского в экспериментальных гравитационно-волновых исследованиях началось в 60-е годы с проверки результатов опытов Джозефа Вебера, который заявил об успешном детектировании гравитационных волн с помощью алюминиевых антенн. Тщательные измерения на аналогичных, созданных в МГУ антеннах, при более высоком уровне чувствительности опровергли выводы Вебера[37] (как впоследствии и другие проверки в разных лабораториях). Брагинский также теоретически предсказал, что в любых прецизионных измерениях на определённом уровне чувствительности начинают проявляться квантовые ограничения (стандартный квантовый предел) и предложил способы обхода этой проблемы (Квантово-невозмущающие измерения). Квантовые ограничения играют существенную роль в современных интерферометрических детекторах. Принимал участие в разработке деталей проекта LIGO ещё на этапах планирования[32][33][38] и ему даже предлагалось возглавить проект[36][27].
  • Группа В. Б. Брагинского (Физический факультет МГУ) официально участвует в проекте LIGO с самого начала и занималась решением ряда задач, связанных с принципиальными ограничениями чувствительности антенн. В процессе её работы были получены следующие результаты[39]: Создан уникальный подвес пробных масс из плавленого кварца. Измеренное время затухания маятниковых колебаний пробной массы составило около пяти лет. Экспериментально продемонстрировано, что в кварцевых подвесах в отличие от стальных, использовавшихся в начальной версии LIGO, отсутствуют избыточные механические шумы.
  • Детально исследованы шумы, обусловленные электрическими зарядами, находящимися на кварцевых зеркалах.
  • Обнаружен новый класс фундаментальных термодинамических шумов в зеркалах детектора. Их анализ привел к существенному изменению в текущей оптической конфигурации LIGO (отказ от кристаллического сапфира в пользу кварца).
  • Предсказан эффект параметрической неустойчивости интерферометра, который впоследствии был обнаружен в детекторах LIGO экспериментально, предложены способы его предотвращения.
  • Проанализированы качественно новые топологии оптической системы гравитационно-волновых детекторов, основанные на принципах квантовой теории измерений, свободные от ограничений стандартного квантового предела.
  • Участие в LIGO приняла группа члена-корреспондента РАН А. М. Сергеева (Институт прикладной физики РАН, Нижний Новгород). Группа создала и в 2007 году установила на детекторы LIGO оптические изоляторы для предотвращения попадания отражённого от зеркал света обратно в лазер[40].
  • Численные расчёты модели популяции двойных нейтронных звёзд и чёрных дыр (А. В. Тутуков и Л. Р. Юнгельсон, Институт астрономии Российской АН, 1993 г.) показали, что в Галактике частота слияний пар нейтронных звёзд более чем на 2 порядка превышает частоту слияний пар чёрных дыр. Но при фиксированной предельной чувствительности детектора отношение объемов пространства, в которых возможно обнаружение слияний двойных нейтронных звёзд и двойных чёрных дыр, пропорционально отношению масс чёрной дыры и нейтронной звезды в степени 2.5. В силу этого, если массы чёрных дыр превосходят примерно 10 масс Солнца, предсказываемые частоты регистрации становятся сравнимыми и слияние чёрных дыр может быть обнаружено первым[41]. Независимо, на то, что наиболее вероятными кандидатами для обнаружения гравитационных волн являются именно слияния чёрных дыр, а не нейтронных звёзд, указали в 1997 г. сотрудники ГАИШ МГУ В. М. Липунов, К. А. Постнов и М. Е. Прохоров[42].
  • Один из основателей проекта LIGO (а также близкий друг В. Б. Брагинского) Кип Торн высоко оценил вклад российских учёных в проект[43].
  • Глобальная сеть телескопов-роботов МАСТЕР МГУ (руководитель проекта — Липунов В. М.) — вклад в оптическую поддержку исследования области локализации первого гравитационно-волнового события LIGO GW150914[44].
  • Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями: