Гигантов в Солнечной системе было больше?


Терминология[править | править код]

Хотя обычно понятия «Планета-гигант» и «Газовый гигант» считаются синонимами, первое — более общее. Так, например, ледяные гиганты являются планетами-гигантами, но не газовыми гигантами. Основное отличие этих классов — химический состав: массовая доля водорода и гелия у газовых гигантов составляет более 90%, а у ледяных — 15-20%, а также масса — газовые гиганты тяжелее ледяных[1].

Газовые гиганты иногда называют «неудавшимися звёздами» за наибольшую массу среди планет и похожий химический состав, но это в большой степени преувеличение, так как значение общепринятой границы между планетами и коричневыми карликами составляет 13 MJ[2].

Газовые планеты-гиганты растут, как капуста в огороде Бога (ФОТО)

solareclipse.org.ru Планетная система HR 8799 состоит из молодой звезды и четырех газовых гигантов, вращающихся вокруг нее. В атмосфере гигантов телескопы Keck и Gemini, установленные на Гавайях, обнаружили присутствие углерода и воды.

Планеты системы HR 8799 были обнаружены с помощью гигантских телескопов, это одна из первых обнаруженных астрономами экзопланет во Вселенной. Газовые гиганты в несколько раз по размерам превышают Юпитер, но спектральный анализ показал наличие в их атмосфере молекул воды и моноксида углерода. Метана, увы, обнаружено не было.

Распределение молекул в атмосфере планет, полученное с помощью современных анализаторов, и соотношение кислорода и углерода, показало, как они формировались – газовые слои наращивались постепенно, слой за слоем, как листья капусты, вокруг скалистого ядра. Исследователи предполагают, что в системе могут быть и скальные, не только газовые планеты. Возможно, даже пригодные для жизни.

Такой увидел систему HR 8799 художник Dunlap Institute for Astronomy & As trophysics; Mediafarm

  • В России выявили 6406 новых случаев заражения COVID-19
  • Сомнолог рассказала, как спать в жаркую погоду без кондиционера
  • Политолог назвал прецедент, позволяющий РФ ударить по Украине ради воды для Крыма
  • Что мы знаем о биографии Наили Аскер-заде
  • Астрономы зафиксировали новый тип повторяющихся космических радиосигналов неизвестной природы
  • Спортсмены организуют заплыв по акватории залива Петра Великого, чтобы оценить состояние воды
  • В реке найдено тело пропавшего в Башкирии 5-летнего мальчика
  • Российский профессор пообещал ликвидацию «кошмарящей» жителей Донбасса Украине
  • Елена Малышева заявила, что Нью-Йорк «парализован страхом» из-за пандемии COVID-19
  • Учёные определили новые причины старения
  • Как избавиться от утренней сонливости без кофе, чая и энергетиков

Станьте членом КЛАНА и каждый вторник вы будете получать свежий номер «Аргументы Недели», со скидкой более чем 70%, вместе с эксклюзивными материалами, не вошедшими в полосы газеты. Получите премиум доступ к библиотеке интереснейших и популярных книг, а также архиву более чем 700 вышедших номеров БЕСПЛАТНО. В дополнение у вас появится возможность целый год пользоваться бесплатными юридическими консультациями наших экспертов.

  • Введите свой электронный адрес, после чего выберите любой удобный способ оплаты годовой подписки
  • Или

  • Отсканируйте QR. В открывшемся приложении Сбербанк Онлайн введите стоимость подписки год (490 рублей). После чего вышлите код подтверждения на почту

Оставайтесь с нами. Добавьте нас в Ваши источники и подпишитесь на наши соцсети.

Яндекс Новости Google News МирТесен Яндекс Дзен Twitter Telegram Вконтакте Одноклассники Facebook Instagram

Формирование[править | править код]

Согласно гипотезе происхождения Солнечной системы, планеты-гиганты образовались позже, чем планеты земной группы. К этому времени большая часть тугоплавких веществ (окислы, силикаты, металлы) уже выпали из газовой фазы, и из них образовались внутренние планеты (от Меркурия до Марса). Существует гипотеза о пятом газовом гиганте, вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или за её пределы (ставшим планетой-сиротой). Последней такой гипотезой является гипотеза о девятой планете Брауна и Батыгина.

Характеристики[править | править код]

Как уже было сказано, газовые гиганты состоят преимущественно из водорода и гелия. Их массы довольно велики: массы двух газовых гигантов Солнечной системы, Юпитера и Сатурна, равны соответственно 317 и 95 земных масс. Теоретическим верхним пределом массы будет 13 MJ, так как при большей массе в ядре начнут идти термоядерные реакции и объект перейдёт в класс коричневых карликов. Нижний предел пока точно не определён, но должен существовать, так как небольшие небесные тела не способны удержать такой лёгкий газ, как водород.

Строение[править | править код]

Строение планет-гигантов в Солнечной системе
Модели внутреннего строения газовых планет предполагают наличие нескольких слоёв. На определённой глубине давление в атмосферах газовых планет достигает высоких значений, достаточных для перехода водорода в жидкое состояние. Если планета достаточно велика, то ещё ниже может размещаться слой металлического водорода, электрические токи в котором порождают мощное магнитное поле планеты, как у Юпитера и Сатурна. Считается также, что газовые планеты имеют также относительно небольшое каменное или металлическое ядро.

Как показали измерения спускаемого аппарата «Галилео», давление и температура быстро растут уже в верхних слоях газовых планет. На глубине 130 км в атмосфере Юпитера температура составила около 145 °C, давление — 24 атмосферы. Все газовые планеты Солнечной системы излучают заметно больше тепла, чем получают от Солнца, вследствие выделения гравитационной энергии при сжатии. Предложены модели, допускающие выделение крайне незначительных количеств тепла внутри Юпитера при реакциях термоядерного синтеза, но эти модели не имеют наблюдательного подтверждения[3].

Атмосфера[править | править код]

В атмосферах газовых планет дуют мощные ветры со скоростями до нескольких тысяч километров в час (скорость ветра на экваторе Сатурна составляет 1800 км/ч). Имеются постоянные атмосферные образования, представляющие собой гигантские вихри: например, Большое красное пятно (размером в несколько раз больше Земли) на Юпитере наблюдают уже более 300 лет. Имеются также более мелкие пятна на Сатурне.

Спутники[править | править код]

У Юпитера и Сатурна открыто наибольшее количество спутников среди всех планет Солнечной системы. Для всех газовых планет Солнечной системы отношение суммарной массы их спутников к массе планеты составляет около 0,01 % (1 к 10 000). Для объяснения этого факта разработаны модели формирования спутников из газопылевых дисков с большим количеством газа (при этом действует механизм, ограничивающий рост спутников).

Спросите Итана №71: тяжёлые планеты, лёгкое Солнце?

Солнце почти полностью состоит из водорода и гелия, а на Земле этих элементов очень мало. Как это произошло?

Самое большое преимущество юности – это невозможность знать, что является невозможным. — Адам Браун

Каждую неделю вы присылаете мне свои вопросы, из которых я выбираю наилучшие. Но иногда труднее всего ответить на самые простые вопросы. К примеру, посмотрите на Солнце и звёзды, а затем – на планеты. Можно было бы решить, что отличаются они лишь массой – что если сделать планету очень массивной, она станет звездой – но как вы тогда объясните простое наблюдение, сделанное Грегом Роджерсом:

Если Солнце (и все звёзды) в основном состоят из водорода и гелия, почему распределение вещества у планет отличается от них?

Распределение вещества планет не просто отличается от звёзд – оно совершенно другое.

Погрузившись в глубину планеты, мы найдём ещё более сложную ситуацию. Конечно, где-то в подземных пустотах хранится гелий, но он получился в результате радиоактивного распада сверхтяжёлых элементов за миллиарды лет. Небольшое количество водорода там тоже есть, но гораздо больше там будет тяжёлых элементов: металлов типа железа, никеля, кобальта, а также элементов, превосходящих ограничения по стабильности в таблице Менделеева.

Мы это знаем, поскольку слои Земли становятся плотнее по мере погружения в планету. И это не только из-за гравитационного сжатия; самые тяжёлые элементы просто проваливаются вниз. Это очень важно, поэтому я повторюсь: в юности на Земле присутствовало большое разнообразие элементов, но более тяжёлые элементы провалились вниз, а лёгкие остались «плавать» наверху – так же, как менее плотные жидкости плавают над более плотными.

Жидкости и предметы по увеличению плотности: шарик для пинг-понга; ламповое масло; медицинский спирт; пластиковая крышка от бутылки; растительное масло; бусинки; вода; помидор-черри; жидкость для мытья посуды; молоко; игральная кость; кленовый сироп; зёрнышко кукурузы; кукурузный сироп; мёд; металлический болт.

Так что, изучая поверхность Земли, мы видим легчайшие элементы, из которых она сделана. Большинство других элементов в её составе тяжелее и плотнее. Поэтому у нас действительно очень мало водорода и гелия.

Перейдём теперь к Солнцу и звёздам. Посмотрим на солнечный спектр: на нём есть разные линии поглощения, представляющие всю гамму элементов, имеющихся и на Земле, а также несколько тех, что в природе не встречаются.

Что видно сразу, так это два набора линий поглощения, для водорода и гелия, которые очень сильны. Когда мы начали разбираться в том, как работают звёзды, и как температура, ионизация и изобилие элементов связаны между собой, мы открыли, что Солнце состоит на 70% из водорода, на 28% из гелия, и на 1-2% из других элементов.

А Земля на 99% состоит из «других элементов»! Отчего же? Чтобы это понять, вернёмся назад, на место их рождения: к туманности, из которой формируются звёзды. Это молекулярное облако, в основном состоящее из водорода, и содержащее много гелия и немного других веществ – которое начинает коллапсировать под собственным тяготением.

На ранних стадиях формирования звёзд важнее всего оказывается гравитация. В газовом облаке появляются комки, плотность их возрастает, а участки с большой плотностью притягивают всё больше материи. Поскольку гравитационный коллапс происходит довольно быстро, а эффективного метода излучать энергию у газовых облаков не существует, коллапс приводит к разогреву внутренних слоёв этих комков. Спустя немного времени водород в ядре достигает нужной температуры и плотности для начала ядерного синтеза.

Новорожденные звёзды бывают разные: разного цвета, с разными температурами и массами. Но у большинства из них есть общая черта – они не формируются в изоляции, а появляются в компании других комочков материи. Самые крупные из них, получившие наибольшую фору, вырастут в каменистые планеты, газовые гиганты, или, в экстремальных случаях, в другие звёзды.

В то же самое время, энергия, излучаемая родительской звездой в системе, разбрасывается наружу и взаимодействует с тем, что встречается на её пути. Это и солнечный ветер, ионы, электроны, и, конечно же, фотоны. А с чем же встречаются эти энергетические частицы?

В случае каждой планеты или планетоида они встречаются с самыми внешними, с самыми лёгкими элементами, поскольку именно они «плавают» на поверхности над более тяжёлыми, потонувшими ближе к центру. Представьте, что вы со всей силы пинаете футбольный мяч, и потом подумайте, какая будет разница с тем, когда вы пнёте шар для боулинга. Про ногу не думайте – представляйте себе мяч. Футбольный мяч приобретёт большую скорость и улетит, а шар для боулинга едва ли сильно сдвинется с места.

Почему? Потому, что один и тот же импульс энергии, приданный разным по массе предметам, заставляет более лёгкие двигаться быстрее.

Диаграмма убегания газов с поверхности планет. Линия газа, проведённая над планетой, означает, что он сможет убежать от её гравитации. Именно поэтому у каменистых планет нет атмосферы из водорода и гелия, а у газовых гигантов — есть
Такого пинка почти на всех мирах достаточно, чтобы выбить практически весь водород и весь гелий в межзвёздное пространство. Энергии, излучаемой звездой, достаточно, чтобы придать этим атомам скорость, необходимую для преодоления притяжения, и они становятся не связанными гравитацией с этим миром.

Только у газовых гигантов, миров, с массой превышающей земную, по крайней мере, вдвое, гравитация достаточно сильная для того, чтобы удержать гелий и водород. И чем более массивен мир, тем толще может быть его оболочка. Считается, что у газовых гигантов плотное твёрдое ядро, состоящее из тяжёлых элементов, но достичь его можно, только пройдя через множество слоёв, где преобладает водород.

Итак, отвечая на твой вопрос, Грег, все планеты создаются из одинаковых материалов, и если бы не излучение, испускаемое звёздами, на каждой планете преобладали бы водород и гелий, как на Солнце и на других звёздах. Но из-за близости к источнику энергии все элементы планеты получают энергетический пинок, и в случае известных нам каменистых планет, его достаточно, чтобы избавить мир от всего свободного водорода и гелия. Только приобретя очень большую массу, и находясь достаточно далеко от родительской звезды, можно удержать легчайшие из элементов против всего этого излучения. И чем более ты массивен, тем больше можешь удержать. А массу ты можешь наращивать примерно до 8% от массы Солнца, после чего ты в своём ядре начнёшь превращать водород в гелий, и сам станешь звездой!

Именно поэтому элементы расположены там, где они есть. Спасибо за прекрасный вопрос, и надеюсь, что объяснение было сделано понятно для вас и для остальных. Присылайте мне ваши вопросы и предложения для следующих статей.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: