Атмосфера. Состав, строение, циркуляция. Распределение тепла и влаги на Земле. Погода и климат


Содержание воды в атмосфере Земли.

Вода в атмосфере Земли содержится:

— в виде пара (водяной газ, образующийся в процессе испарения воды), — в жидком состоянии (облачные элементы в виде капель воды, дождевые капли), — в замерзшем состоянии (облачные элементы в виде ледяных кристаллов, снежинки, градины).

Отличительной особенностью воды от других составных элементов атмосферы Земли, является то, что ее содержание в атмосфере постоянно меняется.

Содержание воды в атмосфере Земли зависит от:

  • — температуры воздуха,
  • — состояния испаряющей поверхности.

В арктических странах температура воздуха очень низкая, поэтому в атмосфере содержится очень малое, с трудом поддающееся измерению, количество воды – т.е. воздух является сухим. В жарких же странах, где процесс испарения идет очень интенсивно, наоборот, количество воды в атмосфере Земли может достигать 4% и воздух является очень влажным.

Опасность избытка кислорода и окисление

Избыток кислорода так же опасен, как и его недостаток. Большое количество кислорода в газовой смеси и большая концентрация его в крови могут разрушить клетки тканей глаз ребенка и стать причиной потери зрения. Этот факт подчеркивает двойственную природу кислорода. Чтобы жить, мы должны вдыхать кислород, но и сам кислород — яд для живых организмов. Когда кислород воздуха взаимодействует с другими элементами, такими, как водород и углерод, происходит реакция, называемая окислением. Окисление разрушает органические молекулы, которые составляют основу жизни. При обычной температуре кислород медленно реагирует с другими элементами, и выделяющееся при этом тепло столь незначительно, что мы его не ощущаем.

Интересно: Сколько весит весь воздух на Земле?

Температура и окисление

Однако реакции окисления стремительно ускоряются при повышении температуры. Чиркните спичкой о коробок. Трение между спичечной головкой и абразивной полоской на коробке нагревает головку спички. Реакция окисления в этом случае протекает быстро, и спичка стремительно вспыхивает пламенем. Вы видите свет и ощущаете тепло, выделившееся в ходе реакции окисления. В наших организмах окисление протекает не столь драматично. Красные кровяные клетки поглощают кислород из воздуха в легких и разносят его по всему организму. Кислород в живых клетках в строго контролируемых условиях намного медленнее и не так жарко, как в случае сгоревшей спички, окисляет пищу, которую мы едим. При таком окислении пища расщепляется, в результате освобождается энергия, и образуются вода и углекислый газ. Углекислый газ с кровью приносится в легкие и из них улетучивается в атмосферу с выдыхаемым воздухом.

Интересный факт: страницы книг желтеют, потому что они окисляются, то есть медленно сгорают.

Дышать достаточным количеством кислорода — безусловная жизненная необходимость. Огонь можно загасить толстым одеялом, перекрыв доступ кислорода к огню. Мы можем задохнуться, если по какой – то причине не будем вдыхать кислород больше пяти минут. Идеальный уровень кислорода во вдыхаемой газовой смеси — 21 процент, то есть тот, который мы имеем в атмосфере. Но даже и тогда кислород часто обнаруживает свой свирепый нрав. Например, сухая трава может вспыхнуть от одной искры. Равновесие кислорода и других газов поддерживается в природе жизненными циклами растений и животных. Животные при дыхании выдыхают углекислый газ, а растения поглощают его и взамен выделяют кислород.

Интересно: Движущиеся камни — описание, фото и видео

Единицы измерения содержания воды в атмосфере Земли.

Парциальное давление водяного пара.

Парциальное давление (гПа) – давление отдельно взятого компонента в газовой смеси, в нашем случае, паров воды в атмосфере. Т.е., парциальное давление водяного пара – это давление, которое имел бы водяной пар, если бы он занимал объем, равный объему газовой смеси, в которой он находится (при той же температуре).

Газы всегда вытекают из области с высоким парциальным давлением в область с более низким давлением; и чем больше разница, тем быстрее поток.

При повышении температуры воздуха, процесс испарения становится все интенсивнее, в воздух поступает все большее количество молекул воды, и парциальное давление паров воды увеличивается.

Когда достигается равновесие между количеством молекул, покидающих воду и возвращающихся в нее, давление становится равновесным, а пар – насыщенным. При новом повышении температуры для поддержания насыщенности водяного пара, необходимо новое поступление молекул воды в воздух.

  • Таким образом, чем выше температура воздуха, тем большее количество водяного пара может содержаться в воздухе и тем выше равновесное парциальное давление пара.

При понижении температуры воздуха начинается отток молекул воды из атмосферы Земли. Это происходит путем конденсации паров воды. Так, при охлаждении температуры воздуха, под утро выпадает роса, а если подморозит, то образуется иней.

Абсолютная влажность воздуха

Абсолютная влажность воздуха (г/м3) – масса водяного пара в граммах, содержащаяся в 1 куб. м. воздуха. Другими словами, это плотность водяного пара в воздухе.

Абсолютная влажность воздуха зависит от температурного режима и переноса (адвекции) влаги с океаническими массами воздуха. При одной и той же температуре воздух может поглотить вполне определенное количество водяного пара и достичь состояния полного насыщения.

Абсолютная влажность воздуха в состоянии его насыщения носит название влагоёмкости. Влагоемкость воздуха увеличивается с повышением температуры.

Зависимость количества водяного пара в насыщенном воздухе от температуры воздуха.

Зависимость количества водяного пара в насыщенном воздухе от температуры воздуха. Вода в атмосфере Земли.

Упругость водяного пара.

Упругость водяного пара в атмосфере — парциальное давление водяного пара, находящегося в воздухе; выражается в мбар или мм рт. ст. (по системе СИ — в гПа). Упругость водяного пара зависит от количества водяного пара в единице объёма и является одной из характеристик влажности воздуха.

Упругость водяного пара у земной поверхности может быть около нуля (в Антарктиде, зимой в Якутии, иногда в пустынях) и до 30—35 мбар вблизи экватора. Упругость пара в полярных широтах зимой меньше 1 мбар (иногда лишь сотые доли мбар) и летом ниже 5 мбар; в тропиках же она возрастает до 30 мбар, а иногда и больше. В субтропических пустынях упругость водяного пара понижена до 5—10 мбар. С высотой упругость пара быстро убывает — в 2 раза в нижних 1,5 км и почти до нуля на верхней границе тропосферы.

Максимальные значения упругости водяного пара и абсолютной влажности воздуха при различных температурах воздуха.

Температура воздуха, °С Максимальная упругость водяных паров Е, мм рт. ст.Максимальная абсолютная влажность воздуха fмакс, г/м3
— 25 0,47 0,55
— 20 0,77 0,88
— 15 1,24 1,38
— 10 1,95 2,14
— 5 3,01 3,24
0 4,58 4,84
5 6,54 6,84
10 9,21 9,4
15 12,79 12,8
20 17,54 17,3
25 23,76 23,0
30 31,82 30,3

Относительная влажность воздуха

Относительная влажность воздуха (%) – отношение фактически содержащегося в воздухе пара к максимально возможному (насыщенному) при данной температуре. Например, если относительная влажность равна 100%, то можно сказать, что воздух максимально заполнен парами воды. Если же относительная влажность воздуха равна 10%, то паров воды в атмосфере находится всего 10% от максимально возможного.

При низкой относительной влажности и высокой температуре воздух стремится к насыщению, поэтому процессы испарения воды идут очень интенсивно: быстро сохнет белье, высыхают лужи, испаряются реки и др. Человек легче переносит жару в условиях низкой относительной влажности воздуха, так как пот с поверхности тела испаряется очень быстро, тем самым принося ощущение прохлады.

Воздух в зависимости от насыщения водяными парами бывает:

  • сухой — до 55%,
  • умеренно сухой — от 56 до 70%,
  • умеренно влажный — от 71 до 85%,
  • очень влажный — выше 86%.

Влияние влажности воздуха на организм человека:

Сухой воздух :

  • Вызывает усиленное испарение влаги с кожи, растений и предметов мебели.
  • Сухая слизистая носа – причина частых насморков и ОРЗ.
  • Кожа стареет и теряет эластичность, что влияет на обмен веществ.

Повышенная влажность:

  • При высокой температуре способствует перегреванию организма, а при низкой — переохлаждению.
  • Так как вода лучше проводит тепло, чем воздух, нам холоднее при высокой влажности, чем при низкой.

Слои атмосферы по порядку от поверхности Земли

Атмосфера — это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

  • Тропосфера.
  • Стратосфера.
  • Мезосфера.
  • Термосфера.
  • Экзосфера.

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

слои атмосферы

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время — это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы — падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

что такое тропосфера

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами — 9 км, над экватором — около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.

Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

стратосфера

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное — светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы — приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

мезосфера

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

  • Ионосферы.
  • Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км — более, чем из 100 млн.

термосфера

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.

экзосфера

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц — электронов и протонов.

Видео о том, из чего состоит атмосфера Земли

Гидрологический цикл.

Гидроогический цикл. Вода в атмосфере Земли.

В гидрологическом цикле участвует около 12-14 тыс. км3 воды. Если равномерно распределить всю эту воду по поверхности земного шара, то получится слой толщиной 25 мм.

Составляющие годового водного баланса океана, суши и всей Земли.

В целом для земного шара характерно равенство объемов осадков и испарения, по 577,1 тыс. км3/год, однако как выпадение осадков, так и испарение между сушей и океанами распределено неравномерно.

На сушу в виде осадков ежегодно выпадает 119,1 тыс. км3 воды. Из них 72,3 км3 воды обратно испаряется в атмосферу Земли, а оставшиеся 46,8 км3 – стекают в океан. Т.е., над сушей количество воды, выпадающей в виде осадков, больше, чем количество испаряющейся воды. Над поверхностью океанов мы наблюдаем обратную картину: количество испаряющейся воды больше количества осадков за счет тех самых 46,8 км3 воды, которые стекают в океан с суши.

Таким образом, благодаря гидрологическому циклу и постоянной циркуляции воды в природе, осадков на Земле выпадает в 40 раз больше, чем содержится водяного пара в атмосфере.

Таблица 1. Составляющие годового водного баланса океана, суши и всей Земли

Элементы водного баланса Объем, тыс.км3/год Слой,

мм/год

%
Земной шар (площадь — 510·106 км2)
Осадки 577,1 1130 100
Испарение 577,1 1130 100
Суша (площадь — 149·106 км2)
Осадки 119,1 800 100
Сток 46,8 315 39,3
Испарение 72,3 485 60,7
Мировой океан (площадь — 361·106 км2)
Осадки 485 1270 90,7
Сток 46,8 130 9,3
Испарение 504,8 1400 100

Кислород

Кислород – самый распространенный элемент на Земле: массовая доля в земной коре 47,3%, а объемная доля в атмосфере – 20,95%, массовая доля в живых организмах – около 65%.

Практически во всех соединениях (кроме соединений с фтором и пероксидов) кислород проявляет постоянную валентность II и степень окисления – 2. Атом кислорода не имеет возбужденных состояний, так как на втором внешнем уровне нет свободных орбиталей. В качестве простого вещества кислород существует в виде двух аллотропных видоизменений – газов кислорода О2 и озона О3. Самое важное соединение кислорода – это вода. Около 71% земной поверхности занимает водная оболочка, без воды невозможна жизнь.

Озон в природе образуется из кислорода воздуха во время грозовых разрядов, а в лаборатории – пропусканием электрического разряда через кислород.

Состав воздуха в процентах в атмосфере и на Земле (химия, 8 класс)

Рис. 3. Озон.

Озон – еще более сильный окислитель, чем кислород. В частности? он окисляет золото и платину

Кислород в промышленности обычно получают сжижением воздуха с последующим отделением азота за счет его испарения (имеется разница в температурах кипения: – -183 градуса для жидкого кислорода и -196 градусов для жидкого азота.)

Время жизни водяного пара в атмосфере Земли.

Ежегодно на Земле происходит около 45 циклов «испарение-осадки». «Время жизни» водяного пара в атмосфере составляет 8-10 суток, что намного меньше других составляющих атмосферы. К примеру, время жизни углекислого газа в атмосфере Земли 3-5 лет, а кислорода – около 3-4 тысяч лет.

Короткое время жизни водяного пара в атмосфере не мешает ему переноситься воздушными массами от места испарения до места выпадения в виде осадков на огромные расстояния. Скорость зонального переноса водяного пара (перенос по широте) составляет в среднем 220 км/сут. За один оборот вокруг Земли водяной пар сменяется в среднем 13,5 раз.

Вторичная атмосфера Земли. Окислительная.

В дальнейшем первичная атмосфера стала трансформироваться во вторичную. Это произошло в результате тех же процессов выветривания, происходивших на поверхности земли, вулканической и солнечной активности, а также вследствие жизнедеятельности цианобактерий и сине-зеленых водорослей.

Результатом трансформации стало разложение метана на водород и углекислоту, аммиака – на азот и водород. В атмосфере Земли стали накапливаться углекислый газ и азот.

Сине-зеленые водоросли посредством фотосинтеза стали вырабатывать кислород, который практически весь тратился на окисление других газов и горных пород. В результате этого аммиак окислился до молекулярного азота, метан и оксид углерода – до углекислоты, сера и сероводород – до SO2 и SO3.

Таким образом, атмосфера из восстановительной постепенно превратилась в окислительную.

Роль водяного пара (воды) в атмосфере Земли.

Водяной пар (вода) в атмосфере Земли играет очень важную роль:

— определяя погодные условия (в процессе гидрологического цикла);

— участвуя в энергетических процессах (На землю в виде осадков ежегодно выпадает в среднем 577 тысяч куб. км воды. На испарение такого колоссального количества воды затрачивается 25% солнечной энергии, поступающей на Землю (в количественном выражении это составляет 1024 Дж/год). Это тепло при конденсации пара возвращается в а.);

— являясь важнейшим фактором парникового эффекта (благодаря водяному пару в атмосфере температура у поверхности земли на 20°С выше, чем была бы при его отсутствии);

— формируя тепловой режим земной поверхности и атмосферы путем активного поглощения инфракрасного излучения (поглощая тепловое излучение Земли, водяной пар не дает ему уйти в окружающее космическое пространство и препятствует охлаждению земного шара, т.е. водяной пар в атмосфере выступает в роли теплоизолирующей оболочки планеты.)

Это была статья «Вода в атмосфере Земли и гидрологический цикл.«.

Статьи по теме «Атмосфера Земли»:

  • Воздействие атмосферы Земли на организм человека с увеличением высоты.
  • Высота и границы атмосферы Земли.
  • Физические свойства атмосферы Земли.
  • Образование атмосферы Земли. Первичная и вторичная атмосфера Земли.
  • Состав современной атмосферы Земли. Общие данные.
  • Азот в составе атмосферы Земли – содержание в атмосфере 78%.
  • Кислород в составе атмосферы Земли — содержание в атмосфере 21%.
  • Углекислый газ в атмосфере Земли.
  • Аргон в составе атмосферы Земли — содержание в атмосфере 1%.
  • Вода в атмосфере Земли. Гидрологический цикл.

Состав Земли. Воздух

Воздух — это механическая смесь из различных газов, составляющих атмосферу Земли. Воздух необходим для дыхания живых организмов, находит широкое применение в промышленности.

То, что воздух представляет собой именно смесь, а не однородную субстанцию, было доказано в ходе экспериментов шотландского учёного Джозефа Блэка. В ходе одного из них учёный обнаружил, что при нагревании белой магнезии (углекислый магний) выделяется «связанный воздух», то есть углекислый газ, и образуется жжёная магнезия (окись магния). При обжиге известняка, напротив, происходит удаление «связанного воздуха». На основе этих экспериментов учёный сделал вывод, что различие между углекислыми и едкими щелочами заключается в том, что в состав первых входит углекислый газ, являющийся одной из составных частей воздуха. Сегодня же мы знаем, что кроме углекислого, в состав земного воздуха входят:

Газы атмосферыСодержание по объёму (в %)
Азот N278,084
Кислород O220,946
Аргон Ar0,932
Водяной пар H2O0,5-4
Углекислый газ CO20,032
Неон Ne1,818×10-3
Гелий He4,6×10-4
Метан CH41,7×10-4
Криптон Kr1,14×10-4
Водород H25×10-5
Ксенон Xe8,7×10-6
Закись азота N2O5×10-5

Указанное в таблице соотношение газов в земной атмосфере характерно для её нижних слоёв, до высоты 120 км. В этих областях лежит хорошо перемешанная, однородная по составу область, называемая гомосферой. Выше гомосферы лежит гетеросфера, для которой характерно разложение молекул газов на атомы и ионы. Области отделены друг от друга турбопаузой.

Химическая реакция, при которой под воздействием солнечного и космического излучения происходит разложение молекул на атомы, называется фотодиссоциацией. При распаде молекулярного кислорода образуется атомарный кислород, являющийся основным газом атмосферы на высотах свыше 200 км. На высотах от 1200 км начинают преобладать водород и гелий, являющиеся наиболее лёгкими из газов.

Поскольку основная масса воздуха сосредоточена в 3 нижних атмосферных слоях, изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.

Азот — самый распространенный газ, на долю которого приходится более трёх четвертей объёма земного воздуха. Современный азот образовался при окислении ранней аммиачно-водородной атмосферы молекулярным кислородом, который образуется в процессе фотосинтеза. В настоящее время небольшое количество азота в атмосферу поступает в результате денитрификации — процесса восстановления нитратов до нитритов, с последующим образованием газообразных оксидов и молекулярного азота, который производится анаэробными прокариотами. Часть азота в атмосферу поступает при вулканических извержениях.

В верхних слоях атмосферы при воздействии электрических разрядов при участии озона молекулярный азот окисляется до монооксида азота:

N2 + O2 → 2NO

В обычных условиях монооксид тотчас же вступает в реакцию с кислородом с образованием закиси азота:

2NO + O2 → 2N2O

Азот является важнейшим химическим элементом земной атмосферы. Азот входит в состав белков, обеспечивает минеральное питание растений. Он определяет скорость биохимических реакций, играет роль разбавителя кислорода.

Вторым по распространённости газом атмосферы Земли является кислород. Образование этого газа связывают с фотосинтезирующей деятельностью растений и бактерий. И чем более разнообразными и многочисленными становились фотосинтезирующие организмы, тем более значительным становился процесс содержания кислорода в атмосфере. Небольшое количество тяжёлого кислорода выделяется при дегазации мантии.

В верхних слоях тропосферы и стратосферы под воздействием ультрафиолетового солнечного излучения (обозначим его как hν) образуется озон:

O2 + hν → 2O

2O + O → O3

В результате действия того же ультрафиолетового излучения происходит и распад озона:

О3 + hν → О2 + О

О3 + O → 2О2

В результате первой реакции образуется атомарный кислород, в результате второй — молекулярный кислород. Все 4 реакции носят название «механизм Чепмена», по имени британского учёного Сидни Чепмена открывшего их в 1930 году.

Кислород служит для дыхания живых организмов. С его помощью происходят процессы окисления и горения.

Озон служит для защиты живых организмов от ультрафиолетового излучения, которое вызывает необратимые мутации. Наибольшая концентрация озона наблюдается в нижней стратосфере в пределах т.н. озонового слоя или озонового экрана, лежащего на высотах 22-25 км. Содержание озона невелико: при нормальном давлении весь озон земной атмосферы занимал бы слой толщиной всего 2,91 мм.

Образование третьего по распространенности в атмосфере газа аргона, а также неона, гелия, криптона и ксенона связывают с вулканическими извержениями и распадом радиоактивных элементов.

В частности гелий является продуктом радиоактивного распада урана, тория и радия: 238U → 234Th + α, 230Th → 226Ra + 4He, 226Ra → 222Rn + α (в этих реакция α-частица является ядром гелия, которая в процессе потери энергии захватывает электроны и становится 4He).

Аргон образуется в процессе распада радиоактивного изотопа калия: 40K → 40Ar + γ.

Неон улетучивается из изверженных пород.

Криптон образуется как конечный продукт распада урана (235U и 238U) и тория Th.

Основная масса атмосферного криптона образовалась ещё на ранних стадиях эволюции Земли как результат распада трансурановых элементов с феноменально малым периодом полураспада или поступила из космоса, содержание криптона в котором в десять миллионов раз выше чем на Земле.

Ксенон является результатом деления урана, но основная масса этого газа осталась с ранних стадий образования Земли, от первичной атмосферы.

Содержание всех инертных газов, кроме аргона, в современной атмосфере Земли в тысячи и миллионы раз меньше чем в космическом пространстве, что указывает на их непрерывную утечку в межпланетное пространство.

Углекислый газ поступает в атмосферу в результате вулканических извержений и в процессе разложения органического вещества. Его содержание в атмосфере средних широт Земли сильно различается в зависимости от сезонов года: зимой количество CO2 возрастает, а летом — снижается. Связано данное колебание с деятельностью растений, которые используют углекислый газ в процессе фотосинтеза.

Водород образуется в результате разложения воды солнечным излучением. Но, будучи самым лёгким из газов, входящих в состав атмосферы, постоянно улетучивается в космическое пространство, и потому содержание его в атмосфере очень невелико.

Водяной пар является результатом испарения воды с поверхности озёр, рек, морей и суши.

Концентрация основных газов в нижних слоях атмосферы, за исключением водяных паров и углекислого газа, постоянна. В небольших количествах в атмосфере содержатся оксид серы SO2, аммиак NH3, монооксид углерода СО, озон O3, хлороводород HCl, фтороводород HF, монооксид азота NO, углеводороды, пары ртути Hg, йода I2 и многие другие. В нижнем атмосферном слое тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц.

Источниками твёрдых частиц в атмосфере Земли являются вулканические извержения, пыльца растений, микроорганизмы, а в последнее время и деятельность человека, например, сжигание ископаемого топлива в процессе производства. Мельчайшие частицы пыли, которые являющиеся ядрами конденсации, служат причинами образования туманов и облаков. Без твёрдых частиц, постоянно присутствующих в атмосфере, на Землю не выпадали бы осадки.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: