Ученые расрыли тайну образования магнетаров.


Что такое магнетар?

Здесь на Земле вы можете прожить долгую и счастливую жизнь, но во Вселенной есть места, где вы не протяните и пары секунд. Ничто не является более смертоносным, чем объекты, которые оставляют после себя сверхновые: нейтронные звёзды.

Как вы знаете, нейтронные звёзды образуются, когда звёзды более массивные, чем наше Солнце, взрываются как сверхновые. Когда эти звёзды погибают, они не могут противодействовать мощной гравитации и сжимаются до объектов диаметром в несколько десятков километров. В результате такого огромного давления внутри объекта образуются нейтроны.

В большинстве случаев вы получаете нейтронные звёзды первого типа – пульсары. Пульсар – это крошечная нейтронная звезда, которая вращается с огромной скоростью, порой достигающей нескольких сотен оборотов в секунду.

Однако примерно одна из десяти нейтронных звёзд становится чем-то действительно очень странным. Она становится магнетаром – наиболее загадочным и страшным объектом во Вселенной. Вы, наверное, слышали это слово, но что это такое?

Как я уже сказал, магнетары – это нейтронные звёзды, образовавшиеся в результате взрыва сверхновых. Но что же такого необычного происходит во время их формирования, что их магнитное поле превосходит магнитные поля любых других объектов в сотни, тысячи и даже миллионы раз? На самом деле, астрономы точно не знают, что делает магнитные поля магнетаров настолько мощными.

Согласно первой теории, если нейтронная звезда формируется быстро вращаясь, то совместная работа конвекции и вращения, которая имеет доминирующее влияние в первые несколько секунд существования нейтронной звезды, может привести к образованию мощного магнитного поля. Этот процесс известен учёным как “активное динамо”.

Однако в результате недавних исследований, астрономами была предложена вторая теория формирования магнетаров. Исследователи обнаружили магнетар, который в будущем покинет нашу галактику. Мы уже видели примеры убегающих звёзд, и все они приобретали свою траекторию в результате взрыва сверхновых в двойной системе. Другими словами, этот магнетар также являлся частью бинарной системы.

В такой системе две звезды вращаются друг около друга ближе, чем Земля вокруг Солнца. Это настолько близко, что материал в звёздах может перетекать туда и обратно. Сперва большая звезда начинает раздуваться и передавать материал меньшей звезде. Это увеличение массы приводит к увеличению размеров меньшей звезды и материал начинает перетекать обратно на первую звезду.

В конце концов одна из звёзд взрывается и выбрасывает другую звезду прочь из Млечного Пути, а на месте взрыва остаётся необычная нейтронная звезда, то есть все эти бинарные взаимодействия превратили нейтронную звезду в магнетар. Возможно это и есть решение загадки магнетара.

Магнитное поле магнетара действительно заставит вас испугаться. Магнитная индукция в центре Земли составляет около 25 Гаусс, а вот на поверхности планеты она не превышает 0,5 Гс. Обычная нейтронная звезда имеет магнитное поле с магнитной индукцией в несколько триллионов Гс. Магнетары же ещё в 1000 раз мощнее, чем нейтронные звёзды.

Одной из самых интересных особенностей магнетаров является то, что они могут испытывать звездотрясения. Вы знаете, что существуют землетрясения, но на звёздах – это будут звездотрясения. Когда магнетары образуются, они имеют более плотную внешнюю оболочку. Эта “нейтронная кора” может треснуть, подобно тектоническим плитам на Земле. Когда это происходит магнетар испускает пучок излучения, который мы можем увидеть на огромных расстояниях.

На самом деле, самое мощное из когда-либо зарегистрированных звездотрясений случилось с магнетаром под названием SGR 1806-20, который расположен примерно в 50 000 световых лет от Земли. В десятую долю секунды, этот магнетар выпустил больше энергии, чем Солнце производит за 100 000 лет. И это не был даже взрыв всего объекта, это была просто небольшая трещина на поверхности магнетара.

Магнетары являются удивительными и опасными объектами. К счастью, они находятся очень далеко, и вам не стоит беспокоиться об их влиянии на вашу жизнь.

Ученые расрыли тайну образования магнетаров.

Магнетары – сверхплотные остатки взрывов сверхновых звезд, имеющие удивительные свойства. Это невероятно мощные магниты во Вселенной — в миллионы раз более мощные, чем самые сильные магниты, которые могут создать люди. Используя Очень Большой Телескоп ESO (VLT), группа европейских астрономов, впервые обнаружила звезду, когда-то составлявшую двойную систему с той, из которой впоследствии образовался магнетар. Это открытие помогает понять, как происходит рождение магнетара и почему породившая его звезда не коллапсировала в черную дыру, как должно было случиться по представлениям астрономов.

Когда массивная звезда во время взрыва сверхновой коллапсирует под действием своей силы тяжести, она превращается либо в нейтронную звезду, либо в черную дыру. Mагнетар — это крайне экзотическая форма нейтронной звезды. Как и все нейтронные звезды, она очень маленькая невероятно плотная — кубический сантиметр вещества весил бы около миллиарда тонн. Кроме того, магнетар обладает очень мощным магнитным полем. Вследствие колоссальных напряжений в коре магнетара на нем время от времени происходят внезапные деформации, называемые звездотрясениями, в эти моменты с его поверхности вырывается очень интенсивное гамма-излучение.

Один из примерно двух десятков известных в Млечном Пути магнетаров располагается в звездном скоплении Westerlund 1, в южном созвездии Жертвенника (Ara), на расстоянии 16 000 световых лет от Земли. Он обозначен CXOU J164710.2-455216 и представляет собой крайне интересную загадку для астрономов.

“Мы предпологаем, что магнетар в скоплении Westerlund , скорее всего, образовался при взрыве звезды примерно в 40 раз более массивной, чем Солнце. Но это само по себе необычно – ведь такие массивные звезды после взрыва коллапсируют с образованием черной дыры, а не нейтронной звезды. И у нас нет ответа, почему в результате мог образоваться этот магнетар”, — говорит Саймон Кларк (Simon Clark), главный автор исследования.

Положения магнетара и его вероятного бывшего компаньона в звездном скоплении Westerlund 1

Астрономы предложили решение этой загадки. Они предположили, что магнетар возник при взаимодействии двух очень массивных звезд, входящих в настолько тесную двойную систему, что ее с легкостью можно поместить внутри орбиты Земли. Однако до настоящего момента вблизи магнетара в скоплении Westerlund 1 звезды-напарницы обнаружить не удавалось. Поэтому астрономы применили Очень Большой Телескоп (VLT) для поиска этой звезды в других частях скопления. Они искали убегающие звезды — звезды, с большой скоростью улетающие из скопления. Такая звезда могла быть выброшена со своей орбиты при взрыве, который породил магнетар. И нашли звезду, известную как Westerlund 1-5, которая оказалась именно той.

“Дело не только в том, что движение этой звезды согласуется с предположением о том, что она была выброшена со своей орбиты взрывом сверхновой. Она вдобавок слишком яркая, чтобы она могла родиться как одиночная звезда. Более того, ее в высшей степени необычный химический состав, с избытком углерода, которого невозможно достичь в условиях одиночной звезды, тоже является свидетельством того, что эта звезда образовалась в двойной системе”, — говорит Бен Ритчи (Ben Ritchie) из Открытого Университета, соавтор новой работы.

Открытие позволило астрономам воссоздать историю жизни звезд, в результате которой вместо появления ожидавшейся черной дыры образовался магнетар. На первой стадии этого процесса у более массивной звезды в паре, начинает истощаться ее термоядерное «топливо», вследствие этого процесса ее внешние слои отрываются и захватываются менее массивным компаньоном (тем самым, которому предстоит стать магнетаром). В результате, он начинает вращаться все быстрее и быстрее, и это быстрое вращение оказывается тем существенным фактором, благодаря которому образуется сверхсильное магнитное поле.

На второй стадии вследствие передачи массы второй компонент системы сам становится столь массивным, что в свою очередь сбрасывает большое количество новоприобретенного вещества. Большая часть этого вещества рассеивается в пространстве, но некоторое его количество возвращается на ту звезду, которой оно изначально принадлежало, и которую мы сейчас видим как Westerlund 1-5.

Широкоугольная панорама неба вокруг звездного скопления Westerlund 1

“Именно этот процесс массообмена обусловил уникальный химический состав Westerlund 1-5 и сокращение массы ее компаньона до уровня, достаточного, чтобы вместо черной дыры образовался магнетар — игра с последствиями космического масштаба!” – заключает член исследовательской группы Франсиско Нахарро (Francisco Najarro) из Астробиологического центра (Испания).

Теперь мы понимает, что звезда, которая состоит двойной системы, может оказаться существенным фактором образования магнетара из этой звезды. Быстрое вращение, обусловленное массообменом между двумя звездами, оказывается необходимым для генерации сверхсильного магнитного поля, а второй эпизод массообмена позволяет будущему магнетару «похудеть» достаточно для того, чтобы в момент гибели в форме взрыва сверхновой он не коллапсировал в черную дыру.

Источник: https://www.eso.org

Загадочные магнетары обладают самым мощным магнитным полем во Вселенной

Магнетары имеют самое сильное магнитное поле во Вселенной. До сегодняшнего дня удавалось измерить лишь их наиболее крупномасштабные поля, однако с помощью новой техники и наблюдений за магнетарами в рентгеновском спектре, астрономы выявили сильное, локализованное магнитное поле внутри их поверхности.

Магнитное поле магнетара имеет сложную структуру. Проще всего засечь и измерить его внешнюю часть, которая имеет форму и поведение, сходные с обычным биполярным магнитом.

Новое исследование проводилось на магнетаре SGR 0418+5729. Наблюдения за ним с помощью космического рентгеновского телескопа «XMM-Newton» показали, что внутри него скрыто второе — чрезвычайно сильное магнитное поле.

«Этот магнетар имеет сильное поле, лежащее под его поверхностью. Однако единственный способ обнаружить его – это найти брешь в поверхности, через которую скрытое поле может вырваться наружу», рассказывает один из соавторов исследования Сильвия Зейн.

Такие магнитные утечки также позволяют объяснить характерные для магнетаров спонтанные вспышки излучения. Искривлённое магнитное поле, заключённое внутри звезды, наращивает напряжение под её поверхностью, в какой-то момент прорывая «оболочку» и испуская неожиданные вспышки рентгеновского излучения.

Магнетары слишком малы – всего лишь около 20 километров в диаметре – и удалены, чтобы их можно было разглядеть даже в самые лучшие телескопы. Астрономы замечают их лишь по косвенным признакам, измеряя вариации рентгеновской эмиссии по мере вращения звезды.

«SGR 0418+5729 обращается один раз в 9 секунды. Мы обнаружили, что в определённой точке этого вращения, яркость его рентгеновского свечения резко падает. Это означает, что нечто в конкретной точке его поверхности поглощает излучение», добавляет соавтор исследования Роберто Туролла.

Команда полагает, что концентрация протонов на маленьком участке поверхности магнетара – возможно, порядка нескольких сотен метров – поглощает это излучение. Протоны сконцентрированы в такой малый объём сильным локализованным магнитным полем, вырывающимся из внутренних слоёв звезды, представляя серьёзное свидетельство того, что внутри неё скрывается второе искривлённое магнитное поле.

«Это потрясающее открытие также подтверждает, что, в принципе, другие пульсары могут скрывать сходные мощные магнитные поля под своей поверхностью. В результате, многие пульсары могут переключаться, и на время становится активными магнетарами – и благодаря этому в будущем мы можем открыть намного больше магнетаоров, чем думали прежде. Это заставит нас существенно пересмотреть наши представления о нейтронных звёздах», говорит Зейн.

Данные этого исследования были опубликованы в журнале «Nature».

Недалеко от остатка сверхновой Kesteven 79 обнаружен магнетар (2 фото)

Недалеко от остатка сверхновой Kesteven 79 обнаружен магнетар (2 фото)

Обнаруженная нейтронная звезда с чрезвычайно сильным магнитным полем – магнетар 3XMM J185246.6+003317.

Массивные звезды прекращают свое существование как сверхновые – взрывом, выпуская при этом огромное количество энергии и материи. Все что остается от звезды – это небольшой и чрезвычайно плотный остаток: нейтронная звезда или черная дыра.

Нейтронные звезды представляют собой астрономический объект, являющийся одним из конечных продуктов эволюции звезд. Подобные звезды бывают разных видов в зависимости от их возраста, силы магнитного поля или из-за наличия поблизости другой звезды. Некоторые из энергетических процессов, происходящих вокруг нейтронных звезд, могут быть изучены с помощью рентгеновских телескопов, подобных XMM-Newton.

На этом снимке изображены две сильно разнящиеся нейтронные звезды, которые наблюдались на том же самом участке неба при помощи телескопа XMM-Newton. Зеленый и розовый пузыри, доминирующие на снимке, представляют собой остаток сверхновой Kesteven 79, находящийся на расстоянии около 23 000 световых лет от нас.

Возраст Kesteven 79 астрономы оценивают в пределах от 5-7 тыс. лет, основываясь на свойства горячего газа и размер этого остатка сверхновой. Принимая во внимание время, нужное свету, чтобы достичь Земли, ученые предполагают, что сверхновая, создавшая Kesteven 79, взорвалась 30000 лет назад. Разрушение сверхновой оставило после себя нейтронную звезду со слабым магнитным полем (синее пятно в центре Kesteven 79).

Недалеко от остатка сверхновой Kesteven 79 обнаружен магнетар (2 фото)

Kesteven 79 и магнетар 3XMM J185246.6+003317 ©ESA/XMM-Newton/Ping Zhou,Nanjing University,China

Однако внимание на этом снимке должно притягивать другое синее пятно – магнетар 3XMM J185246.6+003317. Эта нейтронная звезда, расположенная ниже Kesteven 79 на этом снимке, обладает очень сильным магнитным полем. Этот объект был открыт в 2013 году при анализе изображений, полученных несколькими годами ранее. Магнетар был замечен из-за изменения структуры магнитного поля звезды, приведшего к появлению интенсивного рентгеновского излучения.

В то время как нейтронная звезда в остатке сверхновой является относительно молодой, возраст 3XMM J185246.6+003317 оценивается специалистами в миллион лет. Сильная разница в возрасте говорит о том, что образование магнетара из взрыва, вызванного Kesteven 79, крайне маловероятно. Вероятней всего, он сформировался намного раньше.

Строение и состав

Схема строения магнетара

Схема строения магнетара

Магнетар – тип нейтронной звезды, которая имеет чрезвычайно высокую плотность. Как правило, все нейтронные звезды покрыты относительно тонкой корой, состоящей в основном из электронов и тяжелых атомных ядер. Внутри нейтронной звезды находится жидкая плазма, которая в основном состоит из нейтронов. Считается, что именно чрезвычайно сильная внутренняя плотность магнетара служит причиной его высокого магнитного излучения.

А Вы смотрели: Звезда Поллукс или бета Близнецов

Магнетары – это звезды, которые очень быстро вращаются вокруг своей оси. Скорость вращения этих звезд колеблется в пределах от нескольких раз до тысяч оборотов в секунду. Большинство магнетаров имеет относительно небольшие размеры. Как правило, диаметр большинства из них достигает всего 20-30 километров. Хотя, конечно же, существуют сверхмассивные магнетары, которые обладают гораздо большими габаритами.

Что касается массы, то здесь не все так просто. Из-за своей высокой плотности, магнетар диаметром в 30 километров будет значительно тяжелее нашего Солнца. Что касается сверхкрупных магнетаров, то их вес может превышать вес Солнца в несколько десятков раз, а то и более.

Наблюдение и известные магнетары

Сверхновая и магнетар 3XMM J185246.6 003317 (большая синяя точка под ней)

Сверхновая и магнетар 3XMM J185246.6+003317 (большая синяя точка под ней)

Из-за относительно небольшой величины магнетаров, а также их удаленности от Земли, наблюдать их при помощи обычных, любительских телескопов не представляется возможным. Для наблюдения магнетаров наиболее подходит метод инфракрасного или рентгеновского сканирования неба. При помощи специальных агрегатов ученые пытаются обнаружить магнетары в космическом пространстве. Благо из-за того, что они излучают интенсивное магнитное поле и радиацию, обнаружить их с помощью приборов представляется намного более простой задачей.

На сегодняшний день, по разным источникам, человечеству известно от 30 до 150 магнетаров. Последняя цифра скорее характеризует не столько действительное количество магнетаров, сколько количество объектов, похожих на эти астрономические тела. По данным на 2007 год астрономами было открыто только 12 магнетаров. Среди них: SGR 1806-20, SGR 1900+14, 1E 1048.1-5937 и другие.

Магнетар SGR 1806-20

Магнетар SGR 1806-20

Первый объект, SGR 1806-20 представляет чрезвычайно мощный магнетар, который удален от нашей планеты на расстояние 14,5 килопарсек или 50 тысяч световых лет и находится на другом краю нашей Галактики. Второй, предположительно, взорвался в 1998 году, но его свет до сих пор доходит до Земли. Третий находится на относительно близком от нас расстоянии – всего 9 тысяч световых лет. Обнаружение каждого из этих магнетаров было настоящей сенсацией для астрономов. Обнаружение этих и других подобных им звезд продолжает радовать ученых и по сегодняшний день.

А Вы смотрели: Свежие изображения кометы с зонда Rosetta

Нейтронная звезда — астрономический объект, являющийся одним из конечных продуктов эволюции небесных тел, состоящий из нейтронной сердцевины и сравнительно тонкой (1 км) коры вырожденного вещества, содержащей тяжёлые атомные ядра. Масса нейтронной звезды практически такая же, как и у Солнца, но радиус всего 10 км. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м). Считается, что нейтронные звезды рождаются во время вспышек сверхновых. Если наполнить чайную ложку веществом, из которого состоят нейтронные звезды, то ее вес будет равняться примерно 110 миллионам тонн!

Пульсар — космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.

Общие сведения

Массы большинства известных нейтронных звёзд близки к 1,44 массы Солнца, что равно значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 1,4 до примерно 2,5 солнечных масс, однако эти значения в настоящее время известны весьма неточно. Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера — Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды.

Магнитное поле на поверхности таких небесных тел достигает значения 1012—1013 Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнитары (реже пишут также магнетары) — звёзды, обладающие магнитными полями порядка 1014 Гс и выше. Такие поля (превышающие «критическое» значение 4,414·1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

Магнетар или магнитар — нейтронная звезда, обладающая исключительно сильным магнитным полем (до 1011 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров мало, оно составляет около 10 000 лет.

Описание

Магнетары являются малоизученным типом нейтронных звезд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Магнетары образуются из массивных звезд с начальной массой около 40 М.

Толчки, образованные на поверхности магнетара вызывают огромные колебания в небесном теле, а также магнитные колебания поля, которые сопровождают их, часто приводят к огромным выбросам гамма излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах.

Официально дать имя Нейтронной Звезде, Пульсару, Магнетару можно в магазине ROSKOCMOC.RU

На 4 шаге в поле «скидка, пожелания по заказу» Вы можете написать какому именно небесному телу, Вы хотите дать Имя:
Нейтронной звезда

Пульсар
Магнетар

Странные звезды

Она имеет наименование XTE J1810-197. И является членом эксклюзивного клуба странных нейтронных звезд. Эти звезды называются магнетары. Таких объектов в нашей Галактике к настоящему времени открыто совсем немного. А один найден за ее пределами.

XTE J1810-197 изучался как магнетар до тех пор, пока десять лет назад его активность не прекратилась. Но теперь он снова проявляет ее, и астрономы направили свои инструменты в сторону XTE J1810-197. И приготовились записывать данные.

Это занятие может показаться не таким уж и интересным. Но магнетары – невероятно странные объекты! По сути, это «мертвые» звезды. И они, по причинам, которые наука понимает не до конца, имеют безумно мощные магнитные поля.

Только представьте. Эти невероятно плотные звезды могут генерировать магнитные поля, которые примерно в 1 квадриллион раз сильнее магнитного поля Земли! Так что да, они какие-то странные.

В настоящее время науке известно о существовании 23 магнетаров. Но XTE J1810–197 – это нечто совершенно особенное. В то время как все остальные магнетары излучают в основном в гамма-диапазоне, XTE J1810–197 и еще три подобных объекта излучают радиоволны.

Но в конце 2008 года испускаемые XTE J1810-197 радиоволны внезапно перестали регистрироваться на Земле. Наступила тишина.

И она длилась более 10 лет!

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: