ГОРЯ́ЧЕЙ ВСЕЛЕ́ННОЙ ТЕО́РИЯ
ГОРЯ́ЧЕЙ ВСЕЛЕ́ННОЙ ТЕО́РИЯ, теория физич. процессов в расширяющейся Вселенной, согласно которой в прошлом Вселенная имела значительно бо́льшую, чем сейчас, плотность вещества и очень высокую темп-ру. Первоначально Г. В. т. была предложена Г. Гамовым (1948) для объяснения распространённости в природе различных химических элементов и их изотопов.
В 1950-х гг. T. Хаяси (Япония), Э. Ферми и А. Туркевич (США) показали, что попытки объяснить существующую распространённость всех элементов их синтезом в самом начале расширения Вселенной были несостоятельными. Если строго следовать Г. В. т., то в результате ядерных реакций в начале расширения образуются только водород и гелий, примесь др. лёгких элементов незначительна, а тяжёлые элементы практически совсем не образуются. Однако с открытием, что время расширения Вселенной превышает 10 млрд. лет, стало возможным объяснить распространённость тяжёлых элементов их нуклеосинтезом в звёздах.
В начале расширения Вселенной при большой темп-ре в термодинамич. равновесии с веществом должно было находиться электромагнитное излучение. В ходе расширения вещество и излучение остывают, и к настоящему времени во Вселенной должно существовать низкотемпературное излучение (его называют микроволновым фоновым излучением или реликтовым излучением), для которого вещество сегодняшней Вселенной практически прозрачно. Существование во Вселенной такого излучения, имеющего темп-ру всего неск. кельвинов, было предсказано Г. Гамовым (1956).
В 1964 рос. астрофизики А. Г. Дорошкевич и И. Д. Новиков впервые рассчитали широкий спектр плотности электромагнитного излучения от всех источников в эволюционирующей Вселенной (включая радиогалактики и звёзды) и показали, что в области сантиметровых и миллиметровых волн интенсивность реликтового излучения с темп-рой ок. 1 К и выше будет на много порядков превосходить излучение отд. источников и оно может быть обнаружено. Реликтовое излучение (РИ) было открыто А. Пензиасом и P. Вильсоном в 1964–65 на длине волны 7,3 см. Обнаружение РИ стало решающим тестом, подтвердившим справедливость гипотезы о высокой изначальной темп-ре Вселенной. Тщательные последующие наблюдения показали, что РИ действительно является равновесным, как предсказывает теория, и имеет темп-ру 2,73 К.
В начале расширения Вселенной при очень большой темп-ре происходят ядерные реакции, приводящие к образованию гелия. За первые 5 минут образовалось примерно 25% гелия (по массе), 75% вещества осталось в виде водорода. Примесь др. элементов пренебрежимо мала. Вещество с таким составом позже образует небесные тела, в частности звёзды первого поколения (см. Эволюция звёзд). После первых 5 минут все ядерные реакции во Вселенной прекращаются. Вещество продолжает расширяться и остывать.
Спустя примерно 300 тыс. лет вещество (плазма) остывает до темп-ры ок. 4000 К, электроны объединяются с протонами и плазма превращается в нейтральный газ (процесс рекомбинации). Этот газ прозрачен для реликтовых фотонов, давление РИ не влияет на состояние газа. Наблюдая РИ сегодня, мы видим эту эпоху. По очень малым вариациям интенсивности РИ в зависимости от направления можно судить о малых вариациях плотности материи в ту эпоху и исследовать процессы, происходившие в то время. С момента рекомбинации под действием гравитационных сил в веществе начинается рост отд. уплотнений (см. Гравитационная неустойчивость), из которых затем образуются небесные тела – формируется структура Вселенной (см. Космология, Крупномасштабная структура Вселенной).
Наблюдения показывают, что в совр. Вселенной помимо обычного вещества имеется гораздо большее количество т. н. тёмной энергии (ок. 73% всей массы) и тёмной материи (ок. 23%). Природа этих составляющих пока неизвестна.
Важные, пока ещё не совсем ясные процессы протекали вблизи сингулярного состояния материи в самом начале расширения (при плотностях, близких к т. н. планковской плотности, порядка 1094 г/см3). Здесь при очень больших энергиях частиц объединялись, по-видимому, все виды физич. взаимодействий, квантовые процессы были существенны в масштабах всей Вселенной.
Теория горячей Вселенной
Теория горячей Вселенной.
Исторически первой еще в 1930-е годы была рассмотрена модель холодной Вселенной. Предполагалось, что все вещество существовало в виде холодных нейтронов. Однако, как выяснилось позднее, в такой Вселенной в результате цепочки ядерных реакций (с образованием протона, дейтерия и т. д.) все вещество, в конце концов, превратилось бы в гелий. Это противоречит наблюдениям, поскольку подавляющая часть вещества Вселенной состоит из водорода. Другой вариант теории холодной Вселенной был предложен Я. Б. Зельдовичем в начале 60-х годов. Он предполагал, что первоначально холодное вещество Вселенной состояло из смеси протонов, электронов и нейтрино. При расширении Вселенной такая смесь должна была превратиться в чисто водородную плазму. Что касается гелия и других химических элементов, то, согласно этой гипотезе, они синтезировались много позднее, после того, как образовались звезды. В отношении всех элементов, кроме гелия, это справедливо. Но обилие гелия (30 % от всего вещества Вселенной по массе) невозможно объяснить ядерными реакциями в звездах.
Советский и американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии — теории «горячей Вселенной».
Гамов Г.А. выдвинул предположение о том, что расширение Вселенной началось с «горячего» состояния, когда вещество представляло собой смесь различных взаимодействующих между собой элементарных частиц высоких энергий
Теория горячей Вселенной — физическая теория эволюции Вселенной, в основе которой лежит предположение о том, что до того, как в природе появились звезды, галактики и другие астрономические объекты, вещество представляло собой быстро расширяющуюся и первоначально очень горячую среду.
Один из выводов, который вытекал из теории Гамова, состоял в том, что в настоящее время во Вселенной, помимо излучения звезд (и других источников), должно существовать электромагнитное излучение, образовавшееся в ту далекую эпоху, когда никаких звезд еще не было, а Вселенная представляла собой однородную горячую плазму. Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала. При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось — кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К. Таким образом, это излучение, названное реликтовым, сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной.
Несмотря на столь фундаментальный вывод, вытекающий из теории Гамова, никто не пытался его проверить. Надо сказать, что сам Гамов не надеялся на обнаружение реликтового излучения, так как полагал, что оно полностью маскируется излучением звезд, возникших на более поздней стадии эволюции Вселенной. В 1965 г. реликтовое излучение было открыто чисто случайно американскими физиками Р. Вилсоном и А. Пензиасом с помощью 7-метровой рупорной антенны, предназначенной для наблюдения искусственного спутника Земли «Эхо». Таким образом, теория горячей Вселенной получила экспериментальное подтверждение, а Пензиас и Вилсон за открытие реликтового излучения были удостоены Нобелевской премии.
В настоящее время теория горячей Вселенной считается общепризнанной,
История развития представлений о Большом взрыве
- 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности
», в которой он завершил создание релятивистской теории гравитации[18]. - 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок[19]; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
- 1922 — советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как «решение Фридмана»). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
- 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
- 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием[20].
- 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
- 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
- 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
- 1948 — выходит работа Г. А. Гамова о «горячей Вселенной», построенная на теории расширяющейся Вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 . В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
- 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3 K[21].
- 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
- 2003 — спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %)[22].
- 2009 — запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.
История термина
Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang
) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:
«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».
После того, как его лекции были опубликованы, термин стал широко употребляться.