На грани аннигиляции: что делать с антиматерией

Недавно членам коллаборации ALICE в ЦЕРН удалось с рекордной точностью измерить массы ядер антивещества и даже оценить энергию, связывающую в них антипротоны с антинейтронами. Пока значимой разницы между этими параметрами в веществе и антивеществе найдено не было, но не это главное. Важно, что именно сейчас, в последние несколько лет, для измерений и наблюдений становятся доступны не только античастицы, но и антиядра и даже антиатомы. А значит, самое время разобраться с тем, что такое антиматерия и какое место ее исследования занимают в современной физике.

Давайте мы попробуем угадать некоторые из ваших первых вопросов про антиматерию.

А правда, что на основе антиматерии можно сделать сверхмощную бомбу? А что, в ЦЕРНе в самом деле накапливают антивещество, как показано в фильме Ангелы и демоны, и что это очень опасно? А правда, что антиматерия будет исключительно эффективным топливом для космических перелетов? А есть ли хоть доля правды в идее о позитронном мозге, которым Айзек Азимов в своих произведениях наделил роботов?…

Не секрет, что для большинства антиматерия ассоциируется с чем-то исключительно (взрыво)опасным, с чем-то подозрительным, с чем-то будоражащим воображение фантастическими обещаниям и огромными рисками — отсюда и подобные вопросы. Признаемся: законы физики всего этого прямо не запрещают. Однако реализация этих идей настолько далека от реальности, от современных технологий и от технологий ближайших десятилетий, что прагматический ответ простой: нет, для современного мира это всё неправда. Разговор на эти темы — это просто фантастика, опирающаяся не на реальные научные и технические достижения, а на их экстраполяцию далеко за пределы современных возможностей. Если хотите серьезно пообщаться на эти темы серьезно, приходите ближе к 2100 году. А пока что давайте поговорим о реальных научных исследованиях антиматерии.

Что такое антиматерия?

Наш мир устроен так, что для каждого сорта частиц — электронов, протонов, нейтронов, и т.п. — существуют античастицы (позитроны, антипротоны, антинейтроны). Они обладают той же массой и, если они нестабильны, тем же временем полураспада, но противоположными по знаку зарядами и другими числами, характеризующими взаимодействие. У позитронов та же масса, что у электронов, но только положительный заряд. У антипротонов — заряд отрицательный. Антинейтроны электрически нейтральны, так же как и нейтроны, но обладают противоположным барионным числом и состоят из антикварков. Из антипротонов и антинейтронов можно собрать антиядро. Добавив позитронов, мы создадим антиатомы, а накопив их — получим антивещество. Это всё и есть антиматерия.

И тут сразу есть несколько любопытных тонкостей, про которые стоит рассказать. Прежде всего, само по себе существование античастиц — это огромный триумф теоретической физики. Эта неочевидная, а для некоторых даже шокирующая идея была выведена Полем Дираком теоретически и поначалу воспринималась в штыки. Более того, даже после открытия позитронов многие все равно сомневались в существовании антипротонов. Во-первых, говорили они, Дирак придумал свою теорию для описания электрона, и не факт, что для протона она сработает. Вот, например, магнитный момент протона в несколько раз отличается от предсказания теории Дирака. Во-вторых, следы антипротонов долго искали в космических лучах, и что-то ничего не нашлось. В-третьих, они утверждали, — буквально повторяя наши слова, — что если есть антипротоны, тогда должны существовать и антиатомы, антизвезды и антигалактики, и мы бы обязательно их заметили по грандиозным космическим взрывам. Раз мы этого не видим, то наверно потому, что антивещества не бывает. Поэтому экспериментальное открытие антипротона в 1955 году на только что запущенном ускорителе Беватрон стало достаточно нетривиальным результатом, отмеченным Нобелевской премией по физике за 1959 год. В 1956 году на том же ускорителе был открыт и антинейтрон. Рассказ про эти поиски, сомнения, и достижения можно найти в многочисленных исторических очерках, например, вот в этом докладе или в недавней книге Франка Клоуза Antimatter.

Впрочем, надо отдельно сказать, что здравое сомнение в чисто теоретических утверждениях всегда полезно. Например, утверждение, что античастицы имеют ту же массу, что и частицы — это тоже теоретически полученный результат, он следует из очень важной CPT-теоремы. Да, на этом утверждении построена современная, многократно проверенная на опыте физика микромира. Но всё равно это равенство полезно проверять экспериментально: кто знает, может быть так мы нащупаем границы применимости теории.

Другая особенность: не все силы микромира относятся одинаково к частицам и античастицам. Для электромагнитных и сильных взаимодействий разницы между ними нет, для слабых — есть. Из-за этого различаются некоторые тонкие детали взаимодействий частиц и античастиц, например, вероятности распада частицы A на набор частиц B и анти-A на набор анти-B (чуть подробнее про различия см. в подборке Павла Пахова). Эта особенность возникает потому, что слабые взаимодействия нарушают CP-симметрию нашего мира. А вот почему так получается — это одна из загадок элементарных частиц, и она требует выхода за пределы известного.

А вот еще одна тонкость: у некоторых частиц так мало характеристик, что античастицы и частицы вообще не отличаются друг от друга. Такие частицы называются истинно нейтральными. Это фотон, бозон Хиггса, нейтральные мезоны, состоящие из кварков и антикварков одинакового сорта. А вот с нейтрино ситуация пока непонятная: может быть, они истинно нейтральные (майорановские), а может — нет. Это имеет важнейшее значение для теории, описывающей массы и взаимодействия нейтрино. Ответ на этот вопрос реально станет крупным шагом вперед, потому что поможет разобраться с утройством нашего мира. Эксперимент пока ничего однозначного на этот счет не сказал. Но экспериментальная программа по нейтринным исследованиям настолько мощная, экспериментов ставится так много, что физики постепенно приближаются к разгадке.

Общее понятие о материи и антиматерии

Каждый знает ответ на вопрос о том, что такое материя, то есть это субстанция, которая состоит из молекул и атомов. Сами атомы, в свою очередь, состоят из электронов и ядер, образованных протонами и нейтронами. Понимание вопроса, что такое материя, дает возможность понять, что такое антиматерия. Под ней понимается субстанция, составляющие частицы которой имеют противоположный электрический заряд. В случае пары нейтрон-антинейтрон их заряды равны нулю, но магнитные моменты направлены противоположно.

Протон и антипротон

Основное свойство антиматерии – это ее способность к аннигиляции при встрече с обычной материей. В результате контакта этих субстанций масса исчезает и полностью переводится в энергию. Согласно космической теории, во Вселенной существует равное количество материи и антиматерии, этот факт следует из теоретических рассуждений. Однако эти субстанции разделены между собой огромными расстояниями, поскольку любая их встреча приводит к грандиозным космическим феноменам уничтожения материи.

Где она, эта антиматерия?

Античастица при встрече со своей частицей аннигилирует: обе частицы исчезают и превращаются в набор фотонов или более легких частиц. Вся энергия покоя превращается в энергию этого микровзрыва. Это самое эффективное превращение массы в тепловую энергию, в сотни раз превосходящее по эффективности ядерный взрыв. Но никаких грандиозных природных взрывов мы вокруг себя не видим; антиматерии в заметных количествах в природе нет. Однако отдельные античастицы вполне могут рождаться в разнообразных природных процессах.

Проще всего рождать позитроны. Самый простой вариант — радиоактивность, распады некоторых ядер за счет положительной бета-радиоактивности. Например, в экспериментах в качестве источника позитронов часто используется изотоп натрия-22 с периодом полураспада два с половиной года. Другой, довольно неожиданный природный источник — грозовые разряды, во время которых иногда детектируются вспышки гамма-излучения от аннигиляции позитронов, а это значит, что позитроны там как-то родились.

Антипротоны и другие античастицы рождать труднее: энергии радиоактивного распада для этого не хватает. В природе они рождаются под действием космических лучей высоких энергий: космический протон, столкнувшись с какой-то молекулой в верхних слоях атмосферы, порождает потоки частиц и античастиц. Однако это происходит там, наверху, до земли антипроторы почти не долетают (о чем не знали те, кто в 40-х годах искал антипротоны в космических лучах), да и в лабораторию этот источник антипротонов не принесешь.

Во всех физических экспериментах антипротоны производят «грубой силой»: берут пучок протонов большой энергии, направляют его на мишень, и сортируют «адронные ошметки», которые в больших количествах рождаются в этом столкновении. Сортированные антипротоны выводят в виде пучка, а дальше либо разгоняют их до больших энергий для того, чтобы сталкивать с протонами (так работал, например, американский коллайдер Тэватрон), либо, наоборот, замедляют их и используют для более тонких измерений.

В ЦЕРНе, который может по праву гордиться долгой историей исследований антивещества, работает специальный «ускоритель» AD, «Антипротонный замедлитель», который как раз и занимается этой задачей. Он берет пучок антипротонов, охлаждает их (т.е. притормаживает), и дальше распределяет поток медленных антипротонов по нескольким специальным экспериментам. Кстати, если хотите посмотреть на состояние AD в реальном времени, то церновские онлайн-мониторы это позволяют.

Синтезировать антиатомы, даже простейшие, атомы антиводорода, уже совсем трудно. В природе они вообще не возникают — нет подходящих условий. Даже в лаборатории требуется преодолеть множество технических трудностей, прежде чем антипротоны соизволят соединиться с позитронами. Проблема в том, что антипротоны и позитроны, вылетающих из источников, все еще слишком горячие; они просто столкнутся друг с другом и разлетятся, а не образуются антиатом. Физики эти трудности всё же преодолевают, но довольно хитрыми методами (почитайте, как это делается в одном из церновских экспериментов ASACUSA).

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника «Памела», миссией которого было изучение частиц, испускаемых Солнцем.

Изображение электрона и позитрона

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Что известно про антиядра?

Все антиатомные достижения человечества относятся только к антиводороду. Антиатомы других элементов до сих пор не синтезированы в лаборатории и не наблюдались в природе. Причина простая: антиядра создавать еще труднее, чем антипротоны.

Единственный известный нам способ создавать антиядра — это сталкивать тяжелые ядра больших энергий и смотреть, что там получается. Если энергия столкновений велика, в нем родятся и разлетятся во все стороны тысячи частиц, в том числе, антипротоны и антинейтроны. Антипротоны и антинейтроны, случайно вылетевшие в одном направлении, могут объединиться друг с другом — получится антиядро.

Детектор ALICE умеет различать разные ядра и антиядра по энерговыделению и направлению закрутки в магнитном поле.

Изображение: CERN

Поделиться

Метод простой, но не слишком неэффективный: вероятность синтезировать ядро таким способом резко падает при увеличении числа нуклонов. Легчайшие антиядра, антидейтроны, впервые наблюдались ровно полвека назад. Антигелий-3 увидели в 1971 году. Известен также антитритон и антигелий-4, причем последний был открыт совсем недавно, в 2011 году. Более тяжелые антиядра до сих пор не наблюдались.

Поделиться

Два параметра, описывающие нуклон-нуклонные взаимодействия (длина рассеяния f0 и эффективный радиус d0) для разных пар частиц. Красная звездочка — результат для пары антипротонов, полученный коллаборацией STAR.

Изображение: Cornell University Library

К сожалению, антиатомов таким способом не сделаешь. Антиядра не только рождаются редко, но и обладают слишком большой энергией и вылетают во все стороны. Пытаться их отловить на коллайдере, чтобы затем отвести по специальному каналу и охладить, нереально.

Впрочем, иногда достаточно внимательно отследить антиядра на лету, чтобы получить кое-какую интересную информацию об антиядерных силах, действующих между антинуклонами. Самая простая вещь — это аккуратно измерить массу антиядер, сравнить ее с суммой масс антипротонов и антинейтронов, и вычислить дефект масс, т.е. энергию связи ядра. Это недавно проделал эксперимент ALICE, работающий на Большом адронном коллайдере; энергия связи для антидейтрона и антигелия-3 в пределах погрешности совпала с обычными ядрами.

Другой, более тонкий эффект изучил эксперимент STAR на американском коллайдере тяжелых ионов RHIC. Он измерил угловое распределение рожденных антипротонов и выяснил, как оно меняется, когда два антипротона вылетают в очень близком направлении. Корреляции между антипротонами позволили впервые измерить свойства действующих между ними «антиядерных» сил (длину рассеяния и эффективный радиус взаимодействия); они совпали с тем, что известно про взаимодействие протонов.

Есть ли антиматерия в космосе?

Когда Поль Дирак вывел из своей теории существование позитронов, он вполне допускал, что где-то в космосе могут существовать настоящие антимиры. Сейчас мы знаем, что звезд, планет, галактик из антивещества в видимой части Вселенной нет. Дело даже не в том дело, что не видно аннигиляционных взрывов; просто совершенно невообразимо, как они вообще могли бы образоваться и дожить до настоящего времени в постоянно эволюционирующей вселенной.

Но вот вопрос «как так получилось» — это еще одна большущая загадка современной физики; на научном языке она называется проблемой бариогенеза. Согласно космологической картине мира, в самой ранней вселенной частиц и античастиц было поровну. Затем, в силу нарушения CP-симметрии и барионного числа, в динамично развивающейся вселенной должен был появиться небольшой, на уровне одной миллиардной, избыток материи над антиматерией. При остывании вселенной все античастицы проаннингилировали с частицами, выжил лишь этот избыток вещества, который и породил ту вселенную, которую мы наблюдаем. Именно из-за него в ней осталось хоть что-то интересное, именно благодаря нему мы вообще существуем. Как именно возникла эта асимметрия — неизвестно. Теорий существует много, но какая из них верна — неизвестно. Ясно лишь, что это точно должна быть какая-то Новая физика, теория, выходящая за пределы Стандартной модели, за границы экспериментально проверенного.

Три варианта того, откуда могут взяться античастицы в космических лучах высокой энергии: 1 — они могут просто возникать и разгоняться в «космическом ускорителе», например в пульсаре; 2 — они могут рождаться при столкновениях обычных космических лучей с атомами межзвездной среды; 3 — они могут возникать при распаде тяжелых частиц темной материи.

Поделиться

Хоть планет и звезд из антивещества нет, антиматерия в космосе все же присутствует. Потоки позитронов и антипротонов разных энергий регистрируются спутниковыми обсерваториями космических лучей, такими как PAMELA, Fermi, AMS-02. Тот факт, что позитроны и антипротоны прилетают к нам из космоса, означает, что они где-то там рождаются. Высокоэнергетические процессы, которые могут их породить, в принципе известны: это сильно замагниченные окрестности нейтронных звезд, разные взрывы, ускорение космических лучей на фронтах ударных волн в межзвездной среде, и т.п. Вопрос в том, могут ли они объяснить все наблюдаемые свойства потока космических античастиц. Если окажется, что нет, это будет свидетельством в пользу того, что некоторая их доля возникает при распаде или аннигиляции частиц темной материи.

Здесь тоже есть своя загадка. В 2008 году обсерватория PAMELA обнаружила подозрительно большое количество позитронов больших энергий по сравнению с тем, что предсказывало теоретическое моделирование. Этот результаты был надавно подтвержден установкой AMS-02 — одним из модулей Международной Космической Станции и вообще самым крупным детектором элементарных частиц, запущенным в космос (и собранным догадайтесь где? — правильно, в ЦЕРНе). Этот избыток позитронов будоражит ум теоретиков — ведь ответственным за него могут оказаться не «скучные» астрофизические объекты, а тяжелые частицы темной материи, которые распадаются или аннигилируют в электроны и позитроны. Ясности тут пока нет, но установка AMS-02, а также многие критически настроенные физики, очень тщательно изучают это явление.

Отношение антипротонов к протонам в космических лучах разной энергии. Точки — экспериментальные данные, разноцветные кривые — астрофизические ожидания с разнообразными погрешностями.

Изображение: Cornell University Library

Поделиться

С антипротонами тоже ситуация неясная. В апреле этого года AMS-02 на специальной научной конференции представил предварительные результаты нового цикла исследований. Главной изюминкой доклада стало утверждение, что AMS-02 видит слишком много антипротонов высокой энергии — и это тоже может быть намеком на распады частиц темной материи. Впрочем, другие физики с таким бодрым выводом не согласны. Сейчас считается, что антипротонные данные AMS-02, с некоторой натяжкой, могут быть объяснены и обычными астрофизическими источниками. Так или иначе, все с нетерпением ждут новых позитронных и антипротонных данных AMS-02.

AMS-02 зарегистрировала уже миллионы позитронов и четверть миллиона антипротонов. Но у создателей этой установки есть светлая мечта — поймать хоть одно антиядро. Вот это будет настоящая сенсация — совершенно невероятно, чтобы антиядра родились где-то в космосе и долетели бы до нас. Пока что ни одного такого случая не обнаружено, но набор данных продолжается, и кто знает, какие сюрпризы готовит нам природа.

Получение[ | ]

В 1965 году груп­па под руководством Л. Ле­дер­ма­на на­блю­да­ла со­бы­тия об­ра­зо­ва­ния ядер ан­ти­дей­те­рия[2]. В 1970 году из Института фи­зи­ки вы­со­ких энер­гий (г. Протвино) за­ре­ги­ст­ри­ро­ва­ла несколько со­бы­тий об­ра­зо­ва­ния ядер.

В 1970—1974 груп­пой под руководством Ю. Д. Про­кош­ки­на на серпуховском ускорителе были получены и более тяжелые антиядра — трития (изотоп водорода)[3], гелия (ан­ти­ге­лий-3)[2].

В 2001 году в ЦЕРНе был синтезирован атом антиводорода[2], состоящий из позитрона и антипротона. В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.

В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого ученые охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе — Питчарда. В общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды[4].

В мае 2011 года результаты предыдущего эксперимента удалось значительно улучшить — на этот раз было поймано 309 антипротонов, которые удерживались 1000 секунд. Дальнейшие эксперименты по удержанию антивещества призваны показать наличие или отсутствие для антивещества эффекта антигравитации[5].

Стоимость[ | ]

Антивещество известно как самая дорогая субстанция на Земле — по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США[6]. По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов[7]. По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объем, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков[8].

Антиматерия — антигравитирует? Как она вообще чувствует гравитацию?

Если опираться только на экспериментально проверенную физику и не вдаваться в экзотические, никак пока не подтвержденные теории, то гравитация должна действовать на антиматерию точно так же, как на материю. Никакой антигравитации для антиматерии не ожидается. Если же позволить себе заглянуть чуть дальше, за пределы известного, то чисто теоретически возможны варианты, когда в нагрузку к обычной универсальной гравитационной силе существует нечто добавочное, которое по-разному действует на вещество и антивещество. Какой бы ни призрачной казалась эта возможность, ее требуется проверить экспериментально, а для этого надо поставить опыты по проверке того, как антиматерия чувствует земное притяжение.

Долгое время это толком не удавалось сделать по той простой причине, что для этого надо создать отдельные атомы антивещества, поймать их в ловушку, и провести с ними эксперименты. Сейчас это делать научились, так что долгожданная проверка уже не за горами.

Главный поставщик результатов — всё тот же ЦЕРН со своей обширной программой по изучению антивещества. Некоторые из этих экспериментов уже косвенно проверили, что с гравитацией у антиматерии всё в порядке. Например, недавний эксперимент BASE обнаружил, что (инертная) масса антипротона совпадает с массой протона с очень высокой точностью. Если бы гравитация действовала на антипротоны как-то иначе, физики заметили бы разницу — ведь сравнение производилось в одной и той же установке и в одинаковых условиях. Результат этого эксперимента: действие гравитации на антипротоны совпадает с действием на протоны с точностью лучше одной миллионной.

Впрочем, это измерение — косвенное. Для пущей убедительность хочется поставить прямой эксперимент: взять несколько атомов антивещества, уронить их и посмотреть, как они будут падать в поле тяжести. Такие эксперименты тоже проводятся или готовятся в ЦЕРНе. Первая попытка была не слишком впечатляющей. В 2013 году эксперимент ALPHA, — который к тому времени уже научился удерживать облачко антиводорода в своей ловушке, — попробовал определить, куда будут падать антиатомы, если ловушку отключают. Увы, из-за низкой чувствительности эксперимента однозначного ответа получить не удалось: времени прошло слишком мало, антиатомы метались в ловушке туда-сюда, и вспышки аннигиляции случались то здесь, то там.

Ситуацию обещают кардинально улучшить два других церновских эксперимента: GBAR и AEGIS. Оба эти эксперимента проверят разными способами, как падает в поле тяжести облачко сверххолодного антиводорода. Их ожидаемая точность по измерению ускорения свободного падения для антивещества — около 1%. Обе установки сейчас находятся в стадии сборки и отладки, а основные исследования начнутся в 2020 году, когда антипротонный замедлитель AD будет дополнен новым накопительным кольцом ELENA.

Варианты поведения позитрона в твердом веществе.

Изображение: nature.com

Поделиться

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия – это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

Солнечные частицы

В области медицины основное использование антиматерии – это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Что случится, если позитрон попадет в вещество?

Поделиться

Образование молекулярного позитрония на кварцевой поверхности.

Изображение: Clifford M. Surko / Atomic physics: A whiff of antimatter soup

Если вы дочитали до этого места, то уже прекрасно знаете, что как только частица антивещества попадает в обычное вещество, происходит аннигиляция: частицы и античастица исчезают и превращаются в излучение. Но насколько быстро это происходит? Представим себе позитрон, который прилетел из вакуума и вошел в твердое вещество. Проаннигилирует ли он при соприкосновении с первым же атомом? Вовсе не обязательно! Аннилигяция электрона и позитрона — процесс не мгновенный; он требует длительного по атомным масштабам времени. Поэтому позитрон успевает прожить в веществе яркую и насыщенную нетривиальными событиями жизнь.

Во-первых, позитрон может подхватить бесхозный электрон и образовать связанное состояние — позитроний (Ps). При подходящей ориентации спинов, позитроний может жить десятки наносекунд до аннигиляции. Находясь в сплошном веществе, он успеет за это время столкнуться с атомами миллионы раз, ведь тепловая скорость позитрония при комнатной температуре — около 25 км/сек.

Во-вторых, дрейфуя в веществе, позитроний может выйти на поверхность и залипнуть там — это позитронный (а точнее, позитрониевый) аналог адсорбции атомов. При комнатной температуре он не сидит на одном месте, а активно путешествует по поверхности. И если это не внешняя поверхность, а пора нанометрового размера, то позитроний оказывается пойманным в ней на длительное время.

Дальше — больше. В стандартном материале для таких экспериментов, пористом кварце, поры не изолированы, а объединены наноканалами в общую сеть. Тепленький позитроний, ползая по поверхности, успеет обследовать сотни пор. А поскольку позитрониев в таких экспериментах образуется много и почти все они вылезают в поры, то рано или поздно они натыкаются друг на друга и, взаимодействуя, иногда образуют самые настоящие молекулы — молекулярный позитроний, Ps2. Дальше уже можно изучать, как ведет себя позитрониевый газ, какие у позитрония есть возбужденые состояния и т.д. И не думайте, что это чисто теоретические рассуждения; все перечисленные эффекты уже проверены и изучены экспериментально.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: