Солнечный ветер — некий поток частиц, испускаемый внешним слоем Солнца (солнечной короной) на огромной скорости, достигающей 1200 км/с. Испускать его могут все звёзды, и в таком случае называется он звёздным ветром. К слову, поток частиц Солнца также можно назвать звёздным ветром Солнца и ошибки в этом не будет.
Общая информация
Скорость солнечного ветра хоть и очень высока, но намного уступает скорости света (в сотни раз), поэтому не стоит путать эти два понятия. Нашей планеты поток достигает дня за 2-3. Состав звёздного ветра Солнца не блещет особым разнообразием: протоны, электроны, ядра гелия, ну и немного иных частиц. А вот масса испускаемых частиц и правда удивительна — порядка миллиона тонн в секунду! Не укладывается в голове, насколько же огромным должно быть Солнце, чтобы испускать миллиарды лет такой поток и по-прежнему светить нам на небосклоне.
Вообще говоря, солнечный ветер довольно изменчив. Благодаря процессам, происходящим внутри звезды, он может обладать различной интенсивность и скоростью. Так, бывает он спокойным и возмущённым.
Спокойные потоки
солнечного ветра можно разделить на два типа: медленные и быстрые.
- — Медленные
обладают скоростью около 300-500 км/с. Они образуются в спокойных частях короны Солнца. - — Быстрые потоки
имеют скорость от 500 до 800 км/с. Образуются они во многом благодаря существованию корональных дыр на Солнце — участков в солнечной короне, где плотность и температура заметно ниже, нежели на иных участках короны.
Суммарно на долю спокойных потоков приходится 53% времени излучения Солнца.
Возмущённые потоки.
Наиболее частой причиной возмущённых потоков является выброс частиц из солнечной короны (так называемый корональный выброс масс). Интересен тем, что огромные массы плазмы (протоны, электроны и некоторые тяжёлые элементы, вроде гелия и кислорода) испускаются из короны с огромной скоростью, так как вся энергия выброса тратится на ускорение этих частиц. Также потоки такого рода возникают перед быстрыми потоками из корональных дыр. Относят сюда и область сжатия перед быстрыми корональными выбросами.
Термальный механизм диссипации[ | ]
Средняя скорость молекул газа напрямую зависит от температуры, но скорость отдельных молекул постоянно меняется, поскольку они сталкиваются друг с другом, передавая кинетическую энергию. Распределение кинетической энергии между молекулами описывается распределением Максвелла. Зависимость кинетической энергии молекулы от скорости и массы определяется формулой: E k i n = 1 2 m v 2 {\displaystyle E_{\mathit {kin}}={\frac {1}{2}}mv^{2}} .
Отдельные молекулы с высокой кинетической энергией, которые попадают в правый хвост распределения Максвелла, могут иметь скорости, превышающие скорость ускользания, и на уровне атмосферы, где длина свободного пробега сравнима со шкалой высот, могут покидать атмосферу.
Более массивные молекулы газа при равной температуре газа и, соответственно, равной средней кинетической энергии имеют меньшую среднюю скорость, и поэтому они имеют меньшую вероятность покинуть атмосферу.
Именно поэтому диссипация водорода из атмосферы происходит быстрее диссипации углекислого газа. Кроме того, чем больше масса планеты, тем выше скорость ускользания и меньше вероятность диссипации атмосферы. Вероятность же захвата молекул газов из межпланетного пространства, наоборот, возрастает. Вот почему такие газовые гиганты как Юпитер и Сатурн имеют огромное количество водорода и гелия в своей атмосфере, в том числе покинувших атмосферу Земли или Марса. Расстояние до звезды также имеет важное значение: чем ближе планета, тем выше температура атмосферы и выше диапазон скоростей молекул, поэтому большую вероятность диссипации из атмосферы имеют и более массивные молекулы. Отдаленные от Солнца планеты имеют холодные атмосферы, а молекулы имеют меньший диапазон скоростей и меньшую вероятность ускользания. Именно это позволяет Титану, который меньше Земли и дальше от Солнца, удерживать свою атмосферу.
Влияние солнечного ветра
Солнечный ветер защищает Солнечную систему от попадания в неё межзвёздного газа. Получается так, потому что звёздный ветер создаёт границу гелиосферы, через которую не может пройти газ.
Космические лучи, что попадают в нашу звёздную систему из межгалактического пространства, весьма сильно ослабляются под действием магнитного поля солнечного ветра.
Звёздный ветер Солнца оказывает сильное влияние и на нашу планету (как и на другие планеты системы, обладающие магнитным полем). Этот ветер является причиной возникновения полярного сияния, радиационных поясов планет и магнитосферы.
А возмущённые потоки ветра также способствуют проявлению геомагнитной активности (например, возникновению магнитных бурь).
Определение «Солнечный Ветер» по БСЭ:
Солнечный ветер — представляет собой постоянное радиальное истечение плазмы солнечной короны в межпланетное пространство. Образование С. в. связано с потоком энергии, поступающим в корону из более глубоких слоев Солнца. По-видимому, переносят энергию магнитогидродинамические и слабые ударные волны (см. Плазма, Солнце). Для поддержания С. в. существенно, чтобы энергия, переносимая волнами и теплопроводностью, передавалась и верхним слоям короны. Постоянный нагрев короны, имеющей температуру 1,5-2 млн. градусов, не уравновешивается потерей энергии за счёт излучения, т.к. плотность короны мала. Избыточную энергию уносят частицы С. в. По существу С. в. — это непрерывно расширяющаяся солнечная корона. Давление нагретого газа вызывает её стационарное гидродинамическое истечение с постепенно нарастающей скоростью. В основании короны (&sim. 10 тыс.км от поверхности Солнца) частицы имеют радиальную скорость порядка сотен м/сек. на расстоянии несколько радиусов от Солнца она достигает звуковой скорости в плазме 100-150 км/сек, а на расстоянии 1 а. е. (у орбиты Земли) скорость протонов плазмы составляет 300-750 км/сек. Вблизи орбиты Земли температура плазмы С. в., определяемая по тепловой составляющей скоростей частиц (по разности скоростей частиц и средней скорости потока), в периоды спокойного Солнца составляет &sim. 104К, в активные периоды доходит до 4·105 К. С. в. содержит те же частицы, что и солнечная корона, т. е. главным образом протоны и электроны, присутствуют также ядра гелия (от 2 до 20%). В зависимости от состояния солнечной активности поток протонов вблизи орбиты Земли меняется от 5·107 до 5·108 протонов/(смІ·сек), а их пространственная концентрация — от нескольких частиц до нескольких десятков частиц в 1 смі. При помощи межпланетных космических станций установлено, что вплоть до орбиты Юпитера плотность потока частиц С. в. изменяется по закону r&minus.2, где r — расстояние от Солнца. Энергия, которую уносят в межпланетное пространство частицы С. в. в 1 сек, оценивается в 1027-1029 эрг (энергия электромагнитного излучения Солнца &sim.4·1033 эрг/сек). Солнце теряет с С. в. в течение года массу, равную &sim.2·10&minus.14массы Солнца. С. в. уносит с собой петли силовых линий солнечного магнитного поля (т.к. силовые линии как бы «вморожены» в истекающую плазму солнечной короны. см. Магнитная гидродинамика). Сочетание вращения Солнца с радиальным движением частиц. С. в. придаёт силовым линиям форму спиралей. На уровне орбиты Земли напряжённость магнитного поля С. в. меняется в пределах от 2,5·10&minus.6до 4·10&minus.4 э. Крупномасштабная структура этого поля в плоскости эклиптики имеет вид секторов, в которых поле направлено от Солнца или к нему (рис. 1). В период невысокой активности Солнца (1963-64) наблюдались 4 сектора, сохранявшиеся в течение 1,5 лет. При росте активности структура поля стала более динамичной, увеличилось и число секторов. Магнитное поле, уносимое С. в., частично «выметает» галактические Космические лучи из околосолнечного пространства, что приводит к изменению их интенсивности на Земле. Изучение вариаций космических лучей позволяет исследовать С. в. на больших расстояниях от Земли и, что особенно важно, вне плоскости эклиптики. О многих свойствах С. в. вдали от Солнца можно будет, по-видимому, узнать также из исследования взаимодействия плазмы С. в. с плазмой комет — своеобразных космических зондов. Размер полости, занятой С. в., точно не известен (аппаратурой космических станций С. в. прослежен пока до орбиты Юпитера). У границ этой полости динамическое давление С. в. должно уравновешиваться давлением межзвёздного газа, галактического магнитного поля и галактических космических лучей. Столкновение сверхзвукового потока солнечной плазмы с геомагнитным полем порождает стационарную ударную волну перед земной магнитосферой (рис. 2). С. в. как бы обтекает магнитосферу, ограничивая её протяжённость в пространстве (см. Земля). Потоком частиц С. в. геомагнитное поле сжато с солнечной стороны (здесь граница магнитосферы проходит на расстоянии &sim.10 R ⊕. — земных радиусов) и вытянуто в антисолнечном направлении на десятки R⊕. (т. н. «хвост» магнитосферы). В слое между фронтом волны и магнитосферой квазирегулярного межпланетного магнитного поля уже нет, частицы движутся по сложным траекториям и часть из них может быть захвачена в Радиационные пояса Земли. Изменения интенсивности С. в. являются основной причиной возмущений геомагнитного поля (см. Вариации магнитные), магнитных бурь, полярных сияний, нагрева верхней атмосферы Земли, а также ряда биофизических и биохимических явлений (см. Солнечно-земные связи). Солнце не выделяется чем-либо особенным в мире звёзд, поэтому естественно считать, что истечение вещества, подобное С. в., существует и у др. звёзд. Такой «звёздный ветер», более мощный, чем у Солнца, был открыт, например, у горячих звёзд с температурой поверхности &sim.30-50 тыс. К. Термин «С. в.» был предложен американским физиком Е. Паркером (1958), разработавшим основы гидродинамической теории С. в. Лит.: Паркер Е., Динамические процессы в межпланетной среде, пер. с англ., М., 1965. Солнечный ветер, пер. с англ., М., 1968. Хундхаузен А., Расширение короны и солнечный ветер, пер. с англ., М., 1976. М. А. Лившиц, С. Б. Пикельнер. Рис. 1. Секторная структура межпланетного магнитного поля, выявленная американским спутником «IMP-1». Рис. 2. Локализация геомагнитного поля солнечным ветром: 1 — силовые линии магнитного поля Солнца. 2 — ударная волна. 3 — магнитосфера Земли. 4 — граница магнитосферы. 5 — орбита Земли. 6 — траектория частицы.
Нетермальный механизм диссипации[ | ]
Основные нетермальные механизмы диссипации зависят от размера рассматриваемых планет. Основные факторы влияющие на диссипацию в каждом случае — это масса планеты, состав атмосферы и расстояние до Солнца. Основные нетермальные процессы диссипации для Венеры и Марса, двух планет земной группы без магнитосферы, существенно различаются. Основным процессом диссипации для Марса является захват солнечного ветра, поскольку его атмосфера недостаточно плотна для своей защиты.[4] Венера лучше защищена от солнечного ветра своей плотной атмосферой, и захват солнечного ветра не является основным нетермическим процессом диссипации атмосферы. Небольшие космические тела без магнитного поля больше страдают от солнечного ветра, поскольку не могут удерживать достаточно плотную атмосферу.
Основной нетермический процесс диссипации атмосферы Венеры — ускорение частиц атмосферы в электрическом поле. Поскольку электроны более подвижны по сравнению с другими частицами, они имеют больше шансов покинуть верхние слои ионосферы Венеры.[4] В результате может накапливаться небольшой итоговый положительный заряд, он, в свою очередь, создает электрическое поле, которое может ускорять другие положительные частицы и выталкивать их из атмосферы. В результате этого положительные ионы водорода покидают атмосферу планеты. Другой важный процесс диссипации атмосферы Венеры происходит в результате фотохимических реакций, обусловленных близостью к Солнцу. Фотохимические реакции приводят к разложению молекул на составляющие их радикалы с высокой кинетической энергией, сосредоточенной в менее массивной частице. Такие частицы будут иметь достаточно высокую скорость для диссипации из атмосферы планеты. Кислород, по сравнению с водородом, имеет более высокую массу для диссипации из атмосферы при помощи этого механизма.
Примечания[ | ]
- ↑ 123
Флоренский, 1972, с. 314. - (англ.) Solar wind pulses strip Mars’ atmosphere, 15.03.2010, Emily Baldwin
- ↑ 12Shizgal B. D., Arkos G. G.
Nonthermal escape of the atmospheres of Venus, Earth, and Mars (англ.) // Reviews of Geophysics (англ.)русск. : journal. — 1996. — Vol. 34, no. 4. — P. 483—505. — doi:10.1029/96RG02213. — Bibcode: 1996RvGeo..34..483S. - ↑ 1234Lammer H. et al.
Loss of hydrogen and oxygen from the upper atmosphere of Venus (англ.) // Planetary and Space Science : journal. — 2006. — Vol. 54, no. 13—14. — P. 1445—1456. — doi:10.1016/j.pss.2006.04.022. — Bibcode: 2006P&SS…54.1445L. - Discovery — A Popular Journal of Knowledge, New Series, Vol. II, January to … — Google Книги (неопр.)
. Дата обращения 26 апреля 2013. - David C. Catling and Kevin J. Zahnle, The Planetary Air Leak. As Earth’s atmosphere slowly trickles away into space, will our planet come to look like Venus? //SCIENTIFIC AMERICAN, May 2009
- https://books.google.ru/books?id=7cBTwb9PETsC&pg=PA296 ISBN 9027724180, 1987, page 296 chapter 8 table VII «Time (in years) of dissipation of gases from the Earth’s atmosphere at different temperatures»
- Kevin J. Zahnle and David C. Catling.
Our Planet’s Leaky Atmosphere
(неопр.)
. Scientific American (11 мая 2009). - Space Studies Board, Division on Engineering and Physical Sciences.
The Atmospheres of Mars and Venus
(неопр.)
. National Academies Press (15 января 1961).