Как известно, пульсары появляются после вспышек сверхновых звёзд. Можно сказать, это продукт данных вспышек. Надо знать, что первый пульсар открыл в 1967 году Энтони Хьюиш. Строение и состав пульсаров рассматриваются только теоретически и с помощью математических расчётов. Главным образом состоят они из нейтронов, которые составляют ядро. При чём в центре наблюдается наибольшая плотность, превышающая ядерную в несколько раз. В их небольшой атмосфере сконцентрировано всё излучение. Покрывает это скопление кора из плотно расположенных электронов и ионов.
Э́нтони Хью́иш — английский физик, лауреат Нобелевской премии по физике 1974 года
Мощное магнитное поле пульсаров вырабатывают ядерное вещество и плазма. Происходит это при скорости вращения примерно 1000 оборотов в секунду. Для сравнения, поле Земли в миллиарды раз меньше.
Миллисекундные пульсары
Также пульсар является вращающейся нейтронной звездой. Поскольку периоды вращения тела короткие, то он должен иметь плотную структуру. Как оказалось, у разных пульсаров время оборота может быть разное. Таким образом, учёные выделили миллисекундные пульсары. Надо сказать, что это одни из самых старых объектов, которые имеют слабое магнитное поле. Такие объекты характеризуются периодом вращения от одной до десяти миллисекунд.
Пульсар PSR J1748-2446ad
Их происхождение носит теоретический характер. Считается, что ранее это были пульсары с небольшим временем оборота, который со временем увеличился. Поэтому многие называют их раскрученными.
Что такое пульсар?
Радиотелескоп FAST обнаружил новый миллисекундный пульсар. Авторы и права: Pei Wang / NAOC. Пульсар – это космический объект, который испускает мощное электромагнитное излучение в радиодиапазоне, характеризующееся строгой периодичностью. Энергия, высвобождаемая в таких импульсах, является небольшой частью всей энергии пульсара. Абсолютное большинство обнаруженных пульсаров находятся в Млечном Пути. Каждый пульсар испускает импульсы с определённой частотой, которая составляет от 640 пульсаций в секунду до одной – каждые пять секунд. Периоды основной части таких объектов находятся в пределах от 0,5 до 1 секунды. Исследования показали, что периодичность импульсов увеличивается на одну миллиардную секунды каждые сутки, что в свою очередь объясняется замедлением вращения в следствии излучения звездой энергии.
Первый пульсар был открыт Джоселин Белл и Энтони Хьюишем в июне 1967 года. Обнаружение такого рода объектов не было предсказано теоретически и стало большим сюрпризом для учёных. В ходе исследований астрофизики обнаружили что такие объекты должны состоять из весьма плотного вещества. Такой гигантской плотностью вещества обладают только массивные тела, например, звёзды. В следствии громадной плотности ядерные реакции проходящие внутри звезды превращают частицы в нейтроны, именно поэтому эти объекты именуются нейтронными звёздами.
Большинство звёзд имеют плотность немного больше чем у воды, ярким представителем тут является наше Солнце, основным веществом в котором является газ. Белые карлики по массе равны Солнцу, однако имеют меньший диаметр, в следствии чего их плотность составляет примерно 40 т/см3. Пульсары по массе сопоставимы с Солнцем, но их размеры весьма миниатюрны – примерно 30 000 метров, что в свою очередь увеличивает их плотность до 190 млн. т/см3. С такой плотностью Земля имела бы диаметр примерно 300 метров. Вероятнее всего пульсары появляются после взрыва сверхновой, когда оболочка звезды исчезает, а ядро сжимается в нейтронную звезду.
Лучше всего на сегодняшний день изучен пульсар PSR 0531+21, который находится в Крабовидной туманности. Этот пульсар совершает 30 оборотов в секунду, индукция его магнитного поля составляет тысячу Гаусс. Энергия этой нейтронной звезды в сто тысяч раз больше, чем энергия нашей звезды. Вся энергия делится на: радиоимпульсы (0,01%), оптические импульсы (1%), рентгеновское излучение (10%) и низкочастотное радиозлучение / космические лучи (остальное).
Пульсар PSR B1957 + 20 находится в двойной системе. Авторы и права: Dr. Mark A. Garlick; Dunlap Institute for Astronomy & Astrophysics, University of Toronto.
Продолжительность радиоимпульса у стандартной нейтронной звезды составляет тридцатую часть от времени между пульсациями. Все импульсы у пульсара значительно отличаются друг от друга, однако общая форма импульса конкретного пульсара свойственна только ему и одинакова на протяжении десятков лет. Эта форма может рассказать очень много всего интересного. Чаще всего любой импульс делится на несколько субимпульсов, которые в свою очередь делятся на микроимпульсы. Размер таких микроимпульсов может доходить до трёхсот метров, а испускаемая ими энергия равна солнечной.
На данный момент пульсар представляется учеными как вращающаяся нейтронная звезда, имеющая мощное магнитное поле, которое захватывает ядерные частицы вылетающие с поверхности звезды и затем ускоряет их до колоссальных скоростей.
Пульсары состоят из ядра (жидкое) и коры толщина которой равна примерно одному километру. В следствии этого нейтронные звёзды больше похожи на планеты нежели на звёзды. Из-за скорости вращения пульсар имеет сплюснутую форму. Во время импульса нейтронная звезда теряет часть своей энергии, и в результате её вращение замедляется. Из-за этого замедления в коре нарастает напряжение и затем кора ломается, звезда становится немного более круглой – радиус уменьшается, а скорость вращения (из-за сохранения момента) увеличивается.
Расстояния до обнаруженных на сегодняшний день пульсаров варьируются в пределах от 100 световых лет до 20 тысяч.
Магнетары
По данным учёных, в космосе существуют нейтронные звёзды, с невероятно сильным магнитным полем. Такие объекты возникают при условии достаточной массы звезды перед взрывом. Они получили название магнетары. Сначала астрономы только предполагали их наличие, но в 1998 году получили доказательство своих теорий. Они наблюдали мощную вспышку рентгеновского и гамма-излучения от одного из объектов в созвездии Орла. На данный момент это малоизученные космические тела. Поэтому они являются одними из загадочных объектов Вселенной, и разумеется, интересными.
Представление магнетара
Важно, что наблюдать пульсар можно, если он находится под определённым углом вращения. К сожалению, учёные так и не пришли к выводу, почему умершая звезда становится источником излучения, и что заставляет некоторые её части стремительно вращаться. Но не исключено, что мы докопаемся до истины.
Кандидаты в пульсары
Характер получаемых импульсов предполагал, что излучение приходит на Землю с участка пространства, относительно небольшого по объему. Также высокая стабильность пульсара свидетельствует о том, что источник излучения представляет собой жесткую систему, а не скопление газа или плазмы. Периодичное же излучение может быть объяснено тремя способами: колебаниями самого объекта-источника, либо его собственным или орбитальным вращением.
Под орбитальным вращением источника периодичного излучения подразумевается взаимное вращение двух объектов, однако такая система со столь низким периодом излучала бы мощные гравитационные волны, которые бы замедляли вращение объектов и приводили бы к их столкновению всего в течение одного года. Кроме того, сближение вызывало бы уменьшение периода излучения, в то время как у пульсаров он несколько растет со временем. Собственные пульсации такого объекта также приводили бы к уменьшению периода. Остается вариант с собственным вращением объекта.
Кандидатами на роль пульсаров стали такие компактные объекты как черные дыры, нейтронные звезды и белые карлики. Так как были открыты пульсары с периодами около 30 миллисекунд, гипотеза о том, что пульсарами могут быть белые карлики – была отброшена. Дело в том, что белые карлики не могли бы иметь такой малый период вращения, так как были бы разрушены в результате центробежной силы, иными словами – просто разлетелись бы. Черные дыры и вовсе не могут излучать самостоятельно. Тогда единственным кандидатом на роль источника периодичного радиоизлучения остается нейтронная звезда, которая имеет высокую скорость вращения.
Основные характеристики
Кроме координат, пульсары различают по их характеристикам:
- Период вращения. Распределение пульсаров по периоду дает максимум в области 0,6 секунд. То есть большинство пульсаров, называемые «нормальными», имеют такой период вращения. Также имеется еще один выраженный максимум, в несколько раз меньше наибольшего, и он расположен в области 4 мс, потому пульсары такого типа называются «миллисекундными».
А Вы смотрели: Пульсар Вела
1. Открытие пульсаров 2. Основные характеристики наблюдаемого излучения пульсаров 3. Физика пульсаров
П. — источники космич. импульсного радиоизлучения с очень большой стабильностью периода. Они излучают в широком спектр. диапазоне — от метровых до сантиметровых волн включительно, а в ряде случаев — даже в оптич., рентг. и гамма-диапазонах. Осн. особенностью П. состоит в том, что импульсы приходят от них через определенное, характерное для каждого П. время (рис. 1). периоды повторения испульсов P
лежат в пределах от 1,56 мс для П. PSR 1937+21 до 4,3 с для PSR 1845-19. У каждого П. период сохраняется с очень высокой точностью, напр., для PSR 1919+21 он равен 1,33730110168 с.
Открытие пульсаров
Рис. 1. Сигналы PSR 1919+21 на частоте 72,7 МГц. Период пульсара в момент его открытия был равен 1,33730113 с. |
В июле 1967 г. в Великобритании, в Маллардской радиоастрономической обсерватории Кембриджского университета, группа ученых, возглавляемая Э. Хьюишем, начала наблюдения на новом высокочувствительном меридиональном радиотелескопе на волне 3,5 м. Этот инструмент был создан для исследований радиоисточников методом мерцаний (см. Метод мерцаний). Вскоре после начала наблюдений аспирантка Дж. Белл обратила внимание на периодически возникающие радиоимпульсы, к-рые появлялись в один и тот же момент звездных суток, что свидетельствовало об их внеземном происхождении. Так был обнаружен первый источник импульсного космич. радиоизлучения. В дальнейщем были открыты и др. аналогичные источники. Эти необычные объекты названы П. (от англ. pulse — импульс). Более раннему открытию П. помешала очень низкая интенсивность их радиоизлучения, особенно в обычном для радиоастрономических наблюдений в диапазоне сантиметровых и дециметровых волн. Главная трудность была в том, что сигналы от П. можно обнаружить лишь с помощью радиоприемников, способных регистрировать (разрешать) радиоимпульсы малой длительности (сотые и тысячные доли секунды). Обычно же в радиоастрономии для повышения чувствительности радиотелескопа наблюдения проводят с большими временами накопления.
Известно ок. 400 П. Обозначение каждого П. состоит из трех букв — PSR (от англ. pulsar) — и шести цифр, соответствующих значениям координат П. Напр., PSR 0833-45 — П. с координатами и (см. Координаты астрономические).
Основные характеристики наблюдаемого излучения пульсаров
Импульсы П. имеют как простую, так и сложную структуру, к-рая зависит от времени и частоты. Но, несмотря на вариации, ср. форма импульсов (полулученная усреднением большого числа импульсов) стабильна (рис. 2) и характерна для каждого П. (рис. 3). Отдельный импульс обычно состоит из одного или неск. субимпульсов. Субимпульсы часто имеют простую симметричную форму и могут появляться в любой части ср. профиляю Там, где субимпульсы сильнее или появляются чаще, в ср. профиле образуется пик (рис. 2). У нек-рых П. наблюдается дрейф субимпульсов. Возникнув у одного края ср. профиля, субимпульсы в каждом последующем импульсе появляются все ближе к др. краю. При наблюдениях с высоким временным разрешением (рис. 4) в субимпульсах ряда П. можно выделить микроструктуру (микроимпульсы). Существуют П., у к-рых в промежутке между главными импульсами (почти посередине) наблюдается т.н. интеримпульс. Энергия интеримпульсов, как правило, меньше энергии главных импульсов, может быть сравнима с ней.. Ширина усредненого импульса составляет обычно (0,01-0,1)P
.
Рис. 2. Последовательные импульсы PSR 1133+16. Положение и форма отдельных импульсов меняются во времени, но усредненный импульс (вверху) стабилен. |
Со временем периоды П. медленно увеличиваются. Так, у PSR 0531+21 в Крабовидной туманности, к-рый явл. остатком сравнительно недавней (1054 г.) вспышки сверхновой, период растет на с в год (удваивается каждые 2000 лет). У PSR 0834+06 удвоение периода происходит примерно за 8 млн. лет.
Иногда в нек-рых П. наблюдаются скачкообразные изменения периода (за время, не превышающее неск. суток). Впервые такие изменения были зарегистрированы у двух самых молодых П.: PSR 0531+21 и PSR 0833-45 (П. в созвезщдии Парусов). Относительное изменение периодов () у этих П. достигало соответственно и . У PSR 0833-45 скачки наблюдались примерно раз в два года, а у PSR 0531+21 — в неск. раз чаще, и, что особенно характерно, они имели как положительную, так и отрицательную величину . Скачки периода были обнаружены и у старых П., причем у одного из них скачок оказался в 100 раз большим, чем у PSR 0531+21.
Помимо указанных внезапных изменений интервал между импульсами систематически то увеличивается, то уменьшается из-за эффекта Доплера. Наблюдатель движется вместе с Землей вокруг Солнца, то приближаясь, то удаляясь от П., в результате импульсы принимаются соответственно то чаще, то реже.
Рис. 3. Усредненные профили импульсов 45 пульсаров. Длительности импульсов нормированы на величины периодов пульсаров. |
Амплитуда импульсов может меняться, отдельные импульсы даже пропадают. Такое «замирание» П. может длиться неск. десятков периодов, а в ряде случаев излучение возобновляется только через неск. суток и даже недель. Именно эта особенность излучения П. долгое время ставила под сомнение существование PSR 0943+10.
Излучение П., как правило, сильно поляризовано (см. Поляризация). Напр., степень линейной поляризации радиоизлучения PSR 0833-45 близка к 100%. Наблюдается изменение позиционного угла в пределах импульса (рис. 5), причем это изменение характерно для каждого П. Изменение позиционного угла в пределах импульса связано, вероятно, с изменениями направления магн. поля (по отношению к наблюдателю) в области генерации радиоизлучения П. У нек-рых П. наблюдается также круговая поляризация радиоизлучения, достигающая 30-50%.
Импульс радиоизлучения П. возникает практически одновременно в широком интервале радиоволн. Однако при распространении через атмосферу П. и ионизованный межзвездный газ низкочастотная часть излучения запаздывает относительно высокочастотной (чем ниже частота, тем меньше групповая скорость волн в межзвездной среде), и поэтому высокочастотные импульсы приходят к наблюдателю раньше низкочастотных (см. Мера дисперсии). Влияние межзвездной среды сказывается также на длительности импульсов на метровых волнах. Облака межзвездного газа рассеивают проходящее через них радиоизлучение, в результате наблюдатель видит одновременно множество импульсов, прошедших разными путями. Чем больше рассеяние, тем больше запаздывание и размытие импульса.
По величине запаздывания импульсов на разных частотах, а также независимо по поглощению излучения в облаках нейтрального водорода межзвездной среды на волне 21 см были найдены расстояния до П. и получено их пространственное распределение. Оказалось, что они концентрируются к галактической плоскости и находятся на расстоянии в среднем ок. 3 кпк, т.е. являются, несомненно, галактическими объектами.
П. обладают значит. собственными скоростями. Напр., составляющая скорости PSR 1133+16, перпендикулярная лучу зрения, равна 380 км/с.
Плотности потоков радиоизлучения П. исследовались в широком диапазоне волн — от декаметровых до сантиметровых включительно.
Спектры пульсаров сильно отличаются друг от друга, однако обладают нек-рыми общими св-вами, а именно: на частотах ниже ~ 100 МГц наблюдается уменьшение плотности потока радиоизлучения — «завал» спектра, а на частотах выше неск. ГГц спектр становится круче — «излом» спектра (рис. 6). Внутри этого интервала изменение плотности потока носит степенной характер и спектральный индекс лежит в пределах 0,6-3.
Рис. 4. Микроструктура импульса PSR 0950+08. |
Зная длительность импульсов, можно получить верхний предел на размеры излучающей области. Действительно, область излучения не может быть больше длины пути, проходимого эл.-магн. излучением за время длительности импульса. Отсюда следует, что размеры излучающих областей П. 1000-10000 км. Углы, под к-рыми эти области видны с Земли, очень малы (~ 10-12 секунды дуги). Результаты измерений мерцаний П. на еноднородностях межзвездной среды подтверждают малость (-8 секунды дуги) областей излучения. Радиосветимости П. лежат в пределах 1025-1031 эрг/с.
Рис. 5. Изменение поляризации по среднему импульсу PSR 0833-45. |
Вывод о малых размерах областей генерации радиоизлучения П. указывает на их высокие яркостные температуры T
я. Для PSR 0833-45, напр., на волне 13 см
T
я ~ 1025 К, и мощность радиоизлучения пульсаров с ед. поверхности достигает десятков МВт/см2 (мощность излучения с ед. поверхности Солнца 7000 Вт/см2).
Пульсары излучают широкий спектр волн, но ИК-, оптическое, рентгеновское и гамма-излучения наблюдаются только от двух самых молодых (PSR 0531+21 b PSR 0833-45). Данные о светимости этих П. в разных участках спектра и мощности, уносимой релятивистскими частицами, приведены в табл. (численные значения даны в эрг/с).
Рис. 6. Типичный спектр радиоизлучения пульсара . |
Большая часть энергии молодых П. излучается в рентгеновских и гамма-диапазонах. Радиосветимость этих П. ~ 10-5-10-6 от их полной светимости. Характер излучения PSR 0531+21 и PSR 0833-45 существенно различен. У PSR 0531+21 импульсы излучения исупскаются одновременно во всем чрезвычайно широком интервале частот — от до 1024 Гц (рис. 7, I). В случае же PSR 0833-45 картина более сложная: импульсы в разных участках спектра испускаются со сдвигом по времени (рис .7, II).
Ультрареля- тивистские частицы | Диапазоны излучения | ||||
радио- | оптич. | рентг. | гамма- | ||
PSR 0531+21 | 1038 | 1030 | 1033 | 1036 | 1036 |
PSR 0833-45 | 1029 | 1028 | 1032 | 1034 |
Физика пульсаров
Сразу же после открытия П. было высказано предположение, что источниками пульсирующего излучения явл. быстровращающиеся нейтронные звезды с сильным магн. полем (~ 1012-1013 Гс). Излучение П. сильно анизотропно — испускается в узком конусе. При вращении звезды наблюдатель видит П. лишь в тот момент, когда этот конус направлен на него (подобно маяку). Очевидно, период повторения импульсов излучения П. совпадает при этом с периодом вращения нейтронной звезы. Веклвле увеличение периода П. естественно связать с торможением вращения нейтронной звезды. Торможение обусловлено потерями энергии на ускорение частиц и излучение. Трансформация кинетич. энергии вращения в эл.-магн. излучение П. происходит след. образом.
Рис. 7. Средние профили импульсов двух пульсаров: PSR 0531+21 (I) в радио- (2295 МГц, в), оптическом (б) и гамма-диапазонах (а); PSR 0833-45 (II) в радио- (430 МГц, г), оптическом (в) и гамма-диапазонах (а). |
При вращении П. в его магнитосфере благодаря мощному магн. полю индуцируется сильное электрич. поле, к-рое ускоряет частицы до ультрарелятивистских энергий. Эти частицы и генерируют, напр., нетепловое излучение П. В магнитосферах П. ультрарелятивистские частицы теряют на излучение небольшую долю своей энергии и выходят в окружающее пространство. Именно эти частицы генерируют, напр., синхротронное излучение Крабовидной туманности, окружающей самый молодой П. PSR 0531+21.
Открытие П. в остатках вспышек сверхновых (звезд в Крабовидной туманности и парусах) показало, что П. (либо только часть из них) образуются при вспышках сверхновых звезд. Как следует из теории эволюции звезд, при взрыве сверхновой в результате сжатия ее центральной части может образовываться нейтронная звезда — массивное компактное тело. Если сжатие звезды происходит с сохранением углового момента вращения: =const, то при изменении ее радиуса R
в 105 раз (от 1011 см для нормальной звезды до 106 см для нейтронной) период вращения
P
уменьшится в 1010 раз. Возможны начальные периоды вращения нейтронных звезд мс. При сжатии звезды может также сохраняться величина магн. потока (~
BR
2). Поэтому если звезда имела магн. поле
B
~ 102-103 Гс, то в результате сжатия магн. поле усилится до величины ~ 1012-1013 Гс. Эти грубые оценки показывают, что нейтронные звезды должны быстро вращаться и обладать сильным магнитным полем, как это иимеет место в случае П.
Рис. 8. Схема, поясняющая формирование направленности излучения пульсара (n — направление на наблюдателя): а — излучение генерируется вблизи поверхности и испускается вдоль магнитных силовых линий; б — излучение генерируется вблизи светового цилиндра и испускается в направлении движения источника. |
Отсутствие остатков сверхновых вокруг подавляющего большинства известных П. связано, по-видимому, с тем, что ср. возраст П. (неск. млн. лет) в десятки раз превосходит ср. возраст остатков вспышек сверхновых, т.е. остатки сверхновых вокруг большинства П. уже давно рассеялись в межзвездном пространстве. С другой стороны, отсутствие П. внутри ряда остатков сверхновых можно объяснить асимметрией сброса оболочки сверхновой, приводящей к большой скорости П. относительно туманности и вылету его далеко за пределы оболочки (см. Пращи эффект). В нек-рых остатках сверхновых П. могут не наблюдаться из-за того, что Земля не попадает в диаграмму направленности их излучения. Не исключено, что существуют и др. пути эволюции звезд, приводящие образованию П.
Как известно, порядка десятка процентов звезд входят в двойные системы. Однако до сих пор найдено лишь неск. П. (напр., PSR 1913+16), входящих в двойные системы. Этот факт может быть также связан с большой скоростью, приобретаемой П. при взрыве сверхновой.
С другой стороны, если двойная система, содержащая предсверхновую, настолько тесная, что при взрыве не распадается, то достаточно весьма слабого звездного ветра (наличия ионизованной оболочки, окружающей систему), чтобы сделать П. невидимым.
Механизм генерации радиоизлучения П. пока точно неизвестен, но уже сейчас можно сказать, что он когерентный. Это следует из очень высокой яркостной температуры излучения П. Когерентное излучение П. может представлять собой, напр., изгибное излучение сгустков заряженных частиц, истекающих из пульсара. Высокочастотная часть излучения может быть обусловлена некогерентным игзибным или синхротронным излучением.
Природа направленности излучения до конца не ясна. Возможно излучение П. генерируется вблизи его поверхности и выходит в направлении магн. силовых линий (рис. 8, а). Либо источник излучения, вращаясь синхронно с П. с частотой , находится на таком расстоянии r
от оси вращения П., что скорость вращения источника близка к скорости света (т.е. источник расположен вблизи т.н. светового цилиндра, ). Источник, движущийся со скоростью, близкой к скорости света, излучает, подобно релятивистскому электрону (см. Синхротронное излучение) в узком конусе в направлении движения (рис. 8, б).
Как отмечалось ранее, у нек-рых П. между главными импульсами излучения наблюдаются интеримпульсы. Типичным представиттелем таких П. явл. PSR 0531+21 (рис. 7, I). Рассмотрим возморжную природу этого явления для случая, когда излучение П. генерируется вблизи его поверхности. Очевидно, что при (здесь — угол между магн. осью П. и его осью вращения, а — ширина диаграммы направленности излучения П.) излучение от каждого полюса распространяется внутри конического слоя шириной и с углом раствора (рис. 9). При этом конические слои, заполненные излучением каждого из полюсов П., не имеют общих точек. Следовательно, в этом случае, где бы ни находился наблюдатель, он может видеть излучение лишь от одного полюса, т.е. наблюдается один импульс. Если же магн. ось П. почти перпендикулярна оси его вращения (), а наблюдатель находится вблизи экваториальной плоскости нейтронной звезды, то он будет регистрировать два импульса излучения.
Если магн. оси и оси вращения П. ориентированы в пространстве независимо, то вследствие малости величины лишь у одного из десяти П. будут наблюдаться интеримпульсы (при ). Эта оценка зорошо согласуется с результатами наблюдений.
Вращающаяся нейтронная звезда сплющена вдоль оси вращения. В процессе замедления вращения сплющенность звезды уменьшается (снижаются центробежные силы) и в коре нейтронной звезды возникают напряжения. Постепенное накопление напряжений в коре приводит к резким сдвигам — звездотрясению, изменению размеров, а следовательно, и к изменению периода вращения. Это явление и определяет скачкообразные изменения периода П.
Св-ва П. существенно меняются в ходе их эволюции. В зависимости от возраста П. можно условно разделить на три группы: молодые П. (возраст лет), П. среднего возраста ( лет) и старые П. ( лет). Молодые П. явл. мощными источниками высокочастотного излучения, в осн. рентг. и гамма-излучения, и ультрарелятивистских частиц. По мере замедления вращения П. их высокочастотное излучение и поток ультрарелятивистских частиц сильно уменьшаются. Отличительной чертой старых П. явл. «замирание» (прекращение на нек-рое время) их радиоизлучения, причем длительность «замирания» П. увеличивается в ходе эволюции до тех пор, пока, в последний раз послав в космич. пространство импульсы радиоизлучения, П. не «замолчит» навсегда. По существующим оценкам, число «мертвых» П. в космич. пространстве в тысячи раз больше, чем число П., генерирующих мощное радиоизлучение.
Рис. 9. Геометрия излучения пульсара: (a), (б). Наблюдатели 1а и 3а регистрируют излучение от одного из полюсов пульсара; наблюдатель 1б регистрирует излучение от обоих полюсов (два импульса); наблюдатели 2а и 2б излучение пульсара не регистрируют. |
Излучение П. широко используется для решения ряда задач астрономии и физики. При помощи этого природного локатора были с высокой точностью измерены скорость движения и радиус орбиты Земли. Благодаря замечательным св-вам П. — импульсному излучению, его поляризации, широкополосности — были детально исследованы св-ва межзвездной среды: измерена ср. концентрация электронов, к-рая оказалась равной см-3 установлена однородность распределения электронов в плоскости Галактики в масштабах кпк; размеры неоднородностей достигают десятков и даже сотен пк, а ср. концентрация электронов меняется от 0,01 до 0,1 см-3. Было показано, что распределение магн. поля однороднов масштабах >1 кпк, причем ср. величина магн. поля в Галактике составляет Э. Из анализа оптического излучения П. было установлено, что скорость света не зависит от частоты. По запаздыванию радиоизлучения на различных частотах получено ограничение на массу покоя фотона г.
В космич. пространстве имеются объекты, излучение к-рых также представляет собой последовательность коротких импульсов, следующих друг за другом с весьма стабильным периодом. Этими объектами явл. рентгеновские пульсары в тесных двойных системах. По крайней мере, самые короткопериодические рентг. П., подобно радиопульсарам, отождествлены с нейтронными звездами.
Лит.: Хьюиш Э., Пульсары, пер. с англ., УФН, 1969, т. 97, в. 4; Манчестер Р., Тейлор Дж., Пульсары, пер. с англ., М., 1980.
(Л.И. Матвеенко, В.В. Усов
)
История открытия
В 1960-х годах группа ученых под руководством английского физика Энтони Хьюиша собственными руками создала радиотелескоп, с целью наблюдения компактных источников радиоизлучения. К числу научных сотрудников относилась и 23-хлетняя аспирантка Джоселин Белл, которая собирала материал для своей диссертации. Ее задача состояла в пересмотре всех самописцев телескопа – обработке данных наблюдения, и выявлении сигналов от компактных источников. Вскоре, спустя два месяца работы, Джоселин Белл обнаружила некие сигналы, которые нельзя было отнести ни к помехам, ни к известным компактным источникам. Аспирант предположила, что найденный сигнал порождается точечным источником – звездой. Однако период излучения импульсов этим источником был чуть более секунды. Столь частые вспышки не характерны для переменных звезд и не могут быть вызваны процессами, протекающими в них. Вместе с Энтони Хьюишом аспирант продолжила изучение странного излучения, в результате чего гипотеза о земном его происхождении была отброшена.
Были привлечены и другие ученые. Так как был обнаружен только один такой источник, начали возникать предположения, что периодичный источник является следствием деятельности внеземной разумной цивилизации. По этой причине первый радиопульсар получил название Little Green Men («Маленькие зеленые люди») – сокращенно LGM-1. Вскоре Джоселин было обнаружено еще три источника со столь малой периодичностью в совсем иных областях неба. Тогда стало ясно, что данный источник – это новый класс астрономических объектов.
Фото Джоселин Белл 1967 года и 2011 года
Как оказалось, позже – подобные периодические радиосигналы улавливались астрономами и ранее, но принимались за помехи, вызванные человеческой деятельностью.
А Вы смотрели: Самые необычные сверхновые в истории астрономии
Физика радиопульсаров
Быстрое вращение нейтронной звезды вызывает потерю некоторой части своего звездного вещества. То есть быстро вращаясь, нейтронная звезда испускает элементарные частицы, образующие плазму.
Как оказалось, радиопульсары имеют сильные магнитные поля (1010-1013 Гс). Подобные поля наблюдаются у некоторых нейтронных звезд, что укрепляет их в качестве кандидатуры на радиопульсары. В пределах полярных шапок силовые линии электромагнитного поля направлены таким образом, что по отношению к излучаемой плазме образуют продольное электрическое поле. Это поле имеет разность потенциалов между центром и краем полярной шапки, что приводит к ускорению упомянутых испускаемых элементарных частиц до ультрарелятивистских энергий. Достигая столь высоких энергий частицы высвобождают часть энергии в виде излучения, в том числе в радиодиапазоне. Собирая все вышеописанное, можно представить радиопульсар как быстровращающуюся нейтронную звезду с сильным магнитным полем, которая на своих полюсах испускает плазму, излучающую, в свою очередь, электромагнитные волны.
Схема радиопульсара. Сфера в центре — нейтронная звезда, кривые представляют магнитные силовые линии, конусы вдоль магнитной оси — радиолучи, зелёная линия — ось вращения
Далее, если ось вращения звезды не совпадает с осью магнитного поля, то упомянутое электромагнитное излучение также вращается вокруг оси вращения звезды, вместе с самой нейтронной звездой.
Таким образом астрономы имеют дело с так называемым «маяком», излучение которого периодически направлено в сторону наблюдателя с Земли.