Гаусс Карл Фридрих (Gauss, Karl Friedrich).


Этапы жизни

Родился Карл Гаусс 30 апреля 1777 года в немецком герцогстве Брауншвейг в семье бедного смотрителя каналов. Примечательно, что точной даты появления на свет его родители не помнили – Карл сам вывел ее в будущем.

Дом, где родился Гаусс

Дом, где родился Гаусс

Уже в 2 года родственники мальчика признали его гением. В 3 года он читал, писал и исправлял счетные ошибки отца. Позже Гаусс вспоминал, что считать научился раньше, чем разговаривать.

В школе гениальность мальчика подметил его учитель Мартин Бартельс, который позже обучал Николая Лобачевского. Педагог направил ходатайство герцогу Брауншвейгскому и добился для юноши стипендии в крупнейшем техническом университете Германии.

С 1792 по 1795 год Карл Гаусс провел в стенах Брауншвейгского университета, где изучал труды Лагранжа, Ньютона, Эйлера. Следующие 3 года он проучился в Гёттингенском университете. Его учителем стал выдающийся немецкий математик Авраам Кестнер.

На втором году обучения ученый начинает вести дневник наблюдений. Позже биографы почерпнут из него много открытий, которые Гаусс не оглашал при жизни.

В 1798 году Карл возвращается на родину. Герцог оплачивает публикацию докторской диссертации ученого и жалует ему стипендию. В Брауншвейге Гаусс остается до 1807 года. В этот период он занимает должность приват-доцента местного университета.

В 1806 году на войне гибнет покровитель молодого ученого. Но Карл Гаусс уже сделал себе имя. Его наперебой приглашают в разные страны Европы. Математик переходит на работу в немецкий университетский город Гёттинген.

На новом месте он получает должность профессора и директора обсерватории. Здесь он остается вплоть до самой смерти.

Широкое признание Карл Гаусс получил еще при жизни. Он был членом-корреспондентом АН в Петербурге, награжден премией Парижской АН, золотой медалью Лондонского королевского общества, стал лауреатом медали Копли и членом Шведской АН.

Король математики Карл Гаусс родился 30 апреля 1777 г. в немецком герцогстве Брауншвейг. Уже в два года малыш умел читать, писать и считать. Схватывал все с полуслова — у него был прекрасный слух. Однажды он услышал, как отец, смотритель каналов, подсчитывает вслух заработок своих помощников. Карлу тогда было всего три года, но он нашел ошибку в расчетах и указал на нее родителю.

В школе одаренного ребенка сразу же приняли во второй класс. На одном из занятий по математике учитель, надеясь занять детей на весь урок, велел вычислить сумму чисел от 1 до 100. Маленький Гаусс выполнил задание за несколько минут, разработав собственный алгоритм: сначала подсчитал количество пар всех чисел; затем сложил первое и последнее число последовательности — вышло 101; и, наконец, умножил общее количество пар (50) на 101, получив 5050. Это и была искомая сумма.

Кстати, Гаусс легко изучал не только цифры, но и языки. Он быстро освоил латынь, французский и английский. Поэтому долго не мог определиться с направлением высшего образования, колеблясь между филологией и точными науками. В выборе ему помог ассистент преподавателя математики М. Бартельс. Оценив талант Карла, он направил ходатайство герцогу Брауншвейгскому и добился для юноши стипендии в крупнейшем техническом университете Германии.

С 1792 по 1795 год Карл провел в стенах Брауншвейгского университета. Проштудировав труды Ж.-Л. Лагранжа, И. Ньютона и Л. Эйлера, он разработал теорию сравнений, согласно которой любое целое число a является т. н. квадратичным вычетом, если его можно сравнить с квадратом другого целого числа x по модулю m — т. е. если оба числа делятся на m с одним и тем же остатком. Более того, Гаусс изучил свойства вычетов и определил для них конечное поле, что нашло применение в акустике, криптографии и т. д.

Следующие три года Карл проучился в Геттингенском университете, где начал вести дневник наблюдений (позже оттуда почерпнут много открытий, которые Гаусс не огласил при жизни). Затем герцог Брауншвейгский пригласил Карла в свой университет, на место приват-доцента, оплатив публикацию его докторской диссертации и выписав стипендию.

В Брауншвейге Гаусс издал труд «Арифметические исследования», где были представлены результаты его работы в области теории чисел и высшей алгебры. Сконструировав с помощью циркуля и линейки 17-угольник, ученый решил проблему построения правильных многоугольников — показал, что количество сторон фигуры должно составлять простое число вида (22n+1). Этому открытию Гаусс придавал такое значение, что завещал начертить на своей могиле 17-угольник, вписанный в окружность.

Кроме того, ученый обозначил кольцо комплексных («гауссовых») чисел, которые состоят из вещественной части (обычного числа) и мнимой (произведения обычного числа и мнимой единицы i — квадратного корня из –1, указывающего на поворот в системе координат). Для этих чисел Карл разработал теорию делимости и решил с их помощью немало алгебраических проблем. А также доказал основную теорему алгебры — утверждение о том, что поле комплексных чисел алгебраически замкнуто.

В 1806 г. герцог Брауншвейгский погиб на войне, и молодой ученый перешел в Геттинген, получив место профессора и директора обсерватории. На тот момент его слава была уже столь велика, что Наполеон, подойдя с армией к Геттингену, приказал не трогать город, в котором живет «величайший математик всех времен». Правда, позже французы наложили на Германию контрибуцию и потребовали с Гаусса 2 тыс. франков. Друзья предложили Карлу помощь, но тот отказался. Между тем нужную сумму уплатил французский математик М. П. де Лаплас, пояснив, что считает младшего на 29 лет Гаусса величайшим математиком. Спустя некоторое время анонимный почитатель прислал Гауссу 1 тыс. франков, дабы помочь рассчитаться с Лапласом.

В Геттингене Карл штудировал геометрию. В письмах к друзьям он уверял, что к 1816 г. развил «антиевклидову» геометрию. Но, опасаясь насмешек, не стал публиковать свои идеи, из-за чего разделил открытие с венгром Я. Бойяи и русским Н. Лобачевским. В ходе исследований Гаусс выяснил: геометрические фигуры не всегда отвечают пяти постулатам Евклида. Ведь геометрия может описывать не только плоское пространство, но и гиперболическое — т. е. искривленное, выгнутое. Второй постулат Евклида утверждает, что любой отрезок прямой можно продолжать бесконечно. Но если «изогнуть» плоскость, на которой лежит прямая, то она замкнется, подобно окружности. Согласно пятому постулату Евклида, две прямые, пересеченные третьей, образующей с ними по одну сторону два угла, сумма которых не превышает 180°, обязательно пересекутся между собой. Но если одна из этих двух прямых лежит на изогнутой плоскости, то они не пересекутся.

Такое отрицание евклидовых постулатов стало первым шагом к теории относительности.

Далее Гаусс начал изучать внутреннюю геометрию поверхностей. И установил, что поверхности с разной кривизной никогда не лягут одна на другую. Например, кусок шара нельзя распрямить так, чтобы он лег на плоскость или на поверхность шара другого радиуса. В то же время при изгибании поверхности сохраняются длины всех лежащих на ней кривых. Свертывание бумаги в трубочку есть не что иное, как изгибание куска плоскости. Бумага при этом не растягивается, и длины всех начерченных на листе кривых и фигур не меняются. Также Гаусс доказал, что простые поверхности образуются путем растяжения, сжатия и изгибания куска плоскости, в ходе чего каждая точка плоскости перемещается по некоторой траектории и переходит в точку поверхности. Опубликованная в 1827 г. теория поверхностей дала мощный толчок развитию дифференциальной геометрии и способствовала возникновению высшей геодезии.

В 1832 г. Гаусс разработал конструкцию электрического телеграфа, которую позже усовершенствовал с помощью физика В. Вебера. А в 1836-м вместе с Вебером Карл создал общество по изучению магнетизма. Это дало ему возможность исследовать явление досконально, вычислить энергию заряда в конкретной точке поля (потенциал) и прийти к мысли, что скорость распространения электромагнитных взаимодействий имеет предел. Кроме того, Гаусс разработал теорию капиллярности, пояснив, почему жидкость в узких трубках поднимается либо опускается. А еще ввел общую систему единиц измерения: масса — 1 грамм, время — 1 секунда, длина — 1 миллиметр.

В 1836 г. Гауссу предложили провести геодезические измерения территории Ганноверского королевства. Для этого ученый специально разработал гелиотроп — прибор, устроенный по принципу зеркала, отражающего солнечный свет.

В области астрономии Гаусс интересовался небесной механикой, изучал орбиты и возмущения (отклонение от траектории) малых планет. Именно он предложил теорию учета возмущений и доказал на практике ее эффективность. Помимо этого в 1811 г. ученый рассчитал орбиту наблюдаемой кометы. А несколькими годами ранее определил положение карликовой планеты Цереры, открытой в 1801 г.

Трудился Гаусс до последнего дня своей жизни, сохраняя при этом ясность ума и жажду знаний. В 62 года он выучил русский, чтобы прочитать труды Лобачевского в оригинале. Большую часть вычислений ученый производил в уме. В работе был перфекционистом и не публиковал материалы, которые считал «сырыми». Из-за этого во многих открытиях Гаусса опередили другие ученые. Хотя все они считали королем математики именно его. Этот титул был высечен на медали с портретом Гаусса. По указу короля Ганновера Георга V ее отчеканили после смерти гения, которая наступила 23 февраля 1855 г.

Математические открытия

Карл Гаусс

В 1801 году Клаус издает труд «Арифметические исследования». Через 30 лет на свет появится очередной шедевр немецкого математика – «Теория биквадратичных вычетов». В нем приводятся доказательства важных арифметических теорем для вещественных и комплексных чисел.

Гаусс стал первым, кто представил доказательства основной теоремы алгебры и начал изучать внутреннюю геометрию поверхностей. Он также открыл кольцо целых комплексных гауссовых чисел, решил много математических проблем, вывел теорию сравнений, заложил основы римановой геометрии.

ВЕЛИКИЕ НЕМЕЦКИЕ УЧЕНЫЕ

Карл Фридрих Гаусс (нем. Carl Friedrich Gauß) — выдающийся немецкий математик, астроном и физик, считается одним из величайших математиков всех времён.

Карл Фридрих Гаусс родился 30 апреля 1777г. в герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов. У Гаусса в раннем возрасте проявились необычайные способности к математике. Однажды, при расчетах своего отца, его трехлетний сын заметил ошибку в вычислениях. Расчет был проверен, и число, указанное мальчиком было верно. С учителем маленькому Карлу повезло: М. Бартельс оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского.

Это помогло Гауссу закончить колледж, где он изучал Ньютона, Эйлера, Лагранжа. Уже там Гаус сделал несколько открытий в высшей математике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел, Эйлеру это также не удалось.

С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса. В 1796 г. Карл Фридрих Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Два открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета. Герцог продолжал опекать молодого гения. Он оплатил издание его докторской диссертации (1799) и пожаловал неплохую стипендию. После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки.

Мировую известность Карл Гаусс приобрел после разработки метода вычисления эллиптической орбиты планеты по трем наблюдениям. Применение этого метода к малой планете Церера дало возможность вновь найти ее на небе после того, как она была утеряна.

В ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, обнаружил планету, которую назвали Церерой. В марте 1802 была открыта еще одна аналогичная планета – Паллада, и Гаусс тут же вычислил ее орбиту.

Свои методы вычисления орбит Карл Гаусс изложил в знаменитой Теории движения небесных тел (лат.Theoria motus corporum coelestium, 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.

Достижения в других научных сферах

Вице-гелиотроп. Латунь, золото, стекло, красное дерево (создан до 1801 года). С рукописной надписью: «Собственность господина Гаусса». Находится в Университете Гёттингена, первый Физический институт.

Настоящую известность Карлу Гауссу принесли вычисления, с помощью которых он определил положение планеты Цереры, открытой в 1801 году.

В последующем ученый не раз возвращается к астрономическим исследованиям. В 1811 году он рассчитывает орбиту новообнаруженной кометы, делает вычисления для определения расположения кометы «пожара Москвы» в 1812 году.

В 20-х годах 19 века Гаусс работает в сфере геодезии. Именно он создал новую науку – высшую геодезию. Также разрабатывает вычислительные методы для проведения геодезической съемки, издает цикл трудов по теории поверхностей, вошедших в публикацию «Исследования относительно кривых поверхностей» в 1822 году.

Обращается ученый и к физике. Он развивает теории капиллярности и системы линз, закладывает основы электромагнетизма. Совместно с Вильгельмом Вебером изобретает электрический телеграф.

Три случая из жизни короля математики Карла Гаусса, которые перевернули науку

1 января 1801 года итальянский астроном Джузеппе Пиацци открыл новую «звезду» в созвездии Тельца. В последующие две ночи этот объект менял положение странным образом, а потом погода испортилась, и в следующий раз Пиацци заметил свою находку только 23 января. Вскоре Пиацци решил, что это вовсе не звезда, а комета: ее размер и блеск были меньше, чем первое время. Затем он передумал еще раз и признал в небесном теле планету.

Весной Пиацци разослал данные наблюдений коллегам в Милан, Париж и Берлин и попросил называть находку Церерой Фердинандой в честь римской богини плодородия и короля Сицилии. Церера тем временем скрылась в лучах Солнца, и никто не понимал, где она появится в следующий раз. Об этом прознал Гаусс, и ему захотелось придумать новый метод определения орбит небесных тел. Метод Гаусса отличался от других и только предполагал, что орбита должна быть эллиптической, а чтобы высчитать положение тела, ему было достаточно трех наблюдений.

Когда ученый сопоставил выкладки Пиацци с собственными расчетами, данные почти совпали. Спустя несколько месяцев астрономы из Гринвичской обсерватории еще раз подтвердили правоту Гаусса. История Цереры на этом не закончилась. Долгое время ее считали планетой между Марсом и Юпитером, потом — астероидом, и наконец ученые сошлись во мнении, что это карликовая планета.

Как Гаусс помог придумать новую геометрию

Одна из заслуг Гаусса — построение новой геометрической теории. В школе проходят геометрию Евклида, сформулированную еще в III веке до н.э. Это в ней говорится, что через точку на плоскости можно провести только одну прямую, параллельную данной. В течение двух тысячелетий не прекращались попытки исключить эту вроде бы очевидную вещь — пятый постулат Евклида — из аксиом и вывести как теорему, то есть как утверждение, требующее доказательства. Все эти попытки оканчивались неудачей.

Кроме Гаусса, создателями неевклидовой геометрии считаются Николай Лобачевский, Фаркаш Бойяи и его сын Янош. Янош был талантливым юношей и тоже решил пересмотреть пятый постулат Евклида. Фаркаш отговаривал его от этого занятия, но тот все-таки представил результат. Тогда старший Бойяи послал работу на оценку своему другу Гауссу в надежде, что он возьмет Яноша в ученики.

Сначала Гаусс долго не отвечал приятелю, а когда все-таки созрел, ответ его был не из лестных. Знаменитый ученый сказал, что в работе для него нет ничего нового и что он уже сам все это придумал, а не обнародовал свои выкладки потому, что не хотел шумихи. Даже такой великий ум трепетал перед задачей, не решенной за две тысячи лет.

Примерно в то же время пятый постулат Евклида пытался перевернуть Николай Лобачевский. Он верил, что добился не просто абстрактного результата, и представил доклад в Казанском университете. Но когда статья Лобачевского попала в печать, его поднял на смех авторитетный математик Михаил Остроградский. А через два года публицист Фаддей Булгарин выпустил пасквиль о профессорах, которые публикуют чушь. Зато работу Лобачевского высоко оценил Гаусс. В 1842 году по его рекомендации Лобачевского избрали членом-корреспондентом Геттингенского королевского научного общества как «одного из отличнейших математиков Российской империи».

Впоследствии «воображаемая геометрия» Лобачевского, в которой сумма углов треугольника меньше 180°, была признана в научном мире. Это раскрепостило ученика Гаусса Бернхарда Римана, и он создал геометрию, где сумма углов треугольника больше 180°. Позже обе теории понадобились Альберту Эйнштейну, чтобы построить теорию относительности. Эффект, связанный с неевклидовой геометрией, может заметить каждый: если бы его не учитывали в системе GPS, из-за большой скорости спутников на орбите в определении местоположения объекта всего за сутки накопилась бы погрешность около 10 км.

Как Гаусс измерил королевство

В 1818 году Гаусс был живой легендой и, к удивлению коллег, согласился организовать геодезическую съемку недавно образованного королевства Ганновер, чтобы составить подробную карту. Эта задача выглядела слишком приземленной, но не для Гаусса. Во-первых, для этого требовалось оборудование, и Гаусс сконструировал гелиотроп — цилиндр с зеркалом, чтобы направлять луч солнечного света на расстояние и тем самым определять положение в пространстве. Гелиотропы использовали в геодезии вплоть до появления спутниковой навигации.

Во-вторых, перенести кривую поверхность ландшафта на плоскую карту не так-то просто. Гауссу пришлось разработать собственную теорию поверхностей и придумать новые вычислительные методы. Эйнштейн сказал об этом: «Если бы Гаусс не создал геометрию поверхностей, которую взял за основу Риман, трудно представить, что это сделал бы кто-то другой. Значение Гаусса для современной физики и особенно для математических оснований теории относительности поистине огромно».

Источник: Марат Кузаев ИТАР-ТАСС

Личность Карла Гаусса

Карл Гаусс был максималистом. Он никогда не публиковал сырые, даже гениальные труды, считая их несовершенными. Из-за этого в ряде многих открытий его опередили другие математики.

Ученый также был полиглотом. Он свободно разговаривал и писал на латыни, английском, французском. А в 62 года освоил русский, чтобы читать в оригинале труды Лобачевского.

Гаусс был дважды женат, стал отцом для шести детей. К сожалению, обе супруги умерли рано, а один из детей погиб в младенчестве.

Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой

Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой

Скончался Карл Гаусс в Гёттингене 23 февраля 1855 года. В его честь по приказу Короля Ганновера Георга V отчеканили медаль с портретом ученого и его титулом – «король математиков».

Гаусс Карл Фридрих (Gauss, Karl Friedrich).

1777-1798 годы

Дом, где родился Гаусс (не сохранился)

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: . До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледж Collegium Carolinum в Брауншвейге (1792-1795).

Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер. Это — наиболее плодотворный период в жизни Гаусса.

1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n

-угольника с помощью циркуля и линейки: если
n
— простое число, то оно должно быть вида (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.

1798 год: закончен шедевр «Арифметические исследования»

(лат.
Disquisitiones Arithmeticae
), напечатан только в 1801 году.

В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.
1798-1816 годы
Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.

Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д’Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета.

1801 год: избирается членом-корреспондентом Петербургской Академии наук.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методом, и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.

Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

1805 год: Гаусс женился на Иоганне Остгоф. У них было трое детей.

1806 год: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

1807 год: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте.

1809 год: новый шедевр, «Теория движения небесных тел»

. Изложена каноническая теория учёта возмущений орбит.

Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения третьего ребёнка. В Германии разруха и анархия. Это самые тяжёлые годы для Гаусса.

1810 год: новая женитьба — на Минне Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличивается до шести.

1810 год: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

1811 год: появляется новая комета. Гаусс быстро и очень точно рассчитывает её орбиту. Начинает работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

1812 год: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1815 год: публикует первое строгое доказательство основной теоремы алгебры.
1816-1855 годы
1820 год: Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в т. ч. методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления — высшей геодезии, и организовал съёмку местности и составление карт.

1821 год: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».

Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей»

(1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.

1824 год: избирается иностранным почётным членом Петербургской Академии наук.

Гаусс в 1828 г.

1825 год: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.

1829 год: в замечательной работе «Об одном новом общем законе механики»

, состоящей всего из четырёх страниц, Гаусс обосновывает новый вариационный принцип механики — принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной».

Гаусс и Вебер. Скульптура в Гёттингене.

1831 год: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году, в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

1832 год: «Теория биквадратичных вычетов»

. С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.

1833 год: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

1837 год: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.

1839 год: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работам Лобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентом Гёттингенского королевского общества.

В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния»

изложил основы теории потенциала, включая ряд основополагающих положений и теорем — например, основную теорему электростатики (теорема Гаусса).

1840 год: в работе «Диоптрические исследования»

Гаусс разработал теорию построения изображений в сложных оптических системах.

Умер Гаусс 23 февраля 1855 года в Гёттингене.

Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: