Исследование: все дисковые галактики во Вселенной вращаются с одинаковым периодом

В этой главе мы поговорим о кривых вращения спиральной галактики и доказательствах о Темной Материи.

Темная Материя и Наблюдательный Факт о Темной Материи

  • Ранним свидетельством темной материи было изучение кинематики спиральной галактики

    .

  • Солнце смещено на 30 000 световых лет от центра нашей Галактики. Центральная галактическая скорость составляет 220 км / с.
  • Почему скорость 220 км / с не 100 км / с или 500 км / с? Что управляет круговым движением объекта?
  • Масса, заключенная в радиусе, помогает определять скорость во Вселенной.

Ранним свидетельством темной материи было изучение кинематики спиральной галактики

.

Солнце смещено на 30 000 световых лет от центра нашей Галактики. Центральная галактическая скорость составляет 220 км / с.

Почему скорость 220 км / с не 100 км / с или 500 км / с? Что управляет круговым движением объекта?

Масса, заключенная в радиусе, помогает определять скорость во Вселенной.

Вращение Млечного Пути или Спиральная Галактика — Дифференциальное Вращение

  • Угловая скорость

    зависит от расстояния от центра.

  • Орбитальный период времени зависит от расстояния от центра.
  • Материал, расположенный ближе к Галактическому центру, имеет более короткий период времени, а материал, удаленный от Галактического центра, имеет больший период времени.

Угловая скорость

зависит от расстояния от центра.

Орбитальный период времени зависит от расстояния от центра.

Материал, расположенный ближе к Галактическому центру, имеет более короткий период времени, а материал, удаленный от Галактического центра, имеет больший период времени.

Кривая вращения

  • Предсказать изменение скорости в зависимости от радиуса Галактики

    . Кривая, которая дает скорость, изменяется в зависимости от радиуса орбиты.

  • Когда мы видим, что все движется, мы думаем, что гравитация влияет на вращение.
  • Распределение массы зависит от радиуса. Плотность вещества будет предсказывать кривую вращения. Кривая вращения основана на плотности вещества, которая зависит от радиуса.

Предсказать изменение скорости в зависимости от радиуса Галактики

. Кривая, которая дает скорость, изменяется в зависимости от радиуса орбиты.

Когда мы видим, что все движется, мы думаем, что гравитация влияет на вращение.

Распределение массы зависит от радиуса. Плотность вещества будет предсказывать кривую вращения. Кривая вращения основана на плотности вещества, которая зависит от радиуса.

Яркость поверхности

Мы выбираем патч и видим, сколько света выходит.

Количество света, исходящего от пластыря, называется поверхностной яркостью.

Единица измерения — mag / arcsec 2

.

Если мы обнаружим, что поверхностная яркость меняется в зависимости от радиуса, мы можем обнаружить, что светящаяся материя изменяется в зависимости от радиуса.

mu(r) proptoexp left( frac−rhR right)

hR — длина шкалы. mu(r)= muo astexp left( frac−rhR right)

hR для Млечного пути составляет почти 3 кпк.

История и описание проблемы[ | ]

В 1959 году Луиза Волдерс (Louise Volders) показала, что спиральная галактика М33 (Галактика Треугольника) не вращается так, как ожидалось в соответствии с кеплеровской динамикой,[2] в 70-х годах[3] полученный результат был распространён на многие другие спиральные галактики. В соответствии с этой моделью, вещество (такое как звёзды или газ) в дисковой части спирали должно вращаться вокруг центра галактики аналогично тому, как планеты в солнечной системе вращаются вокруг Солнца, то есть в соответствии с механикой Ньютона. Основываясь на этом, можно было ожидать, что средняя орбитальная скорость объекта на определённом расстоянии от наибольшего распределения массы будет уменьшаться обратно пропорционально квадратному корню от радиуса орбиты (штрихованная линия на Рис. 1). Во времена открытия несоответствия считалось, что большая часть массы галактики должна находиться в галактическом балдже, около центра галактики.

Однако наблюдения ротационной кривой спиралей не подтвердили этого. Наоборот, кривая не уменьшается обратно пропорционально квадратному корню, а является «пологой» — снаружи от центрального балджа скорость практически не зависит от радиуса (сплошная линия на Рис. 1). Объяснение, которое требует наименьшего изменения в физических законах вселенной — в том, что существует значительное количество материи на большом расстоянии от центра галактики, которая не излучает свет в таком же отношении «масса-к-свету», как центральный балдж. Астрономы предполагают, что эта дополнительная масса появляется благодаря «тёмной материи» внутри галактического гало. Существование гало первый раз было постулировано Фрицем Цвикки (Fritz Zwicky) сорока годами раньше в его трудах о массах скоплений галактик. В настоящий момент существует большое количество наблюдаемых свидетельств существования «холодной тёмной материи» и её присутствие является значительной особенностью современной Лямбда-CDM модели, которая описывает космологию Вселенной.

Видимое движение небесных тел.

Суточное и годичное видимое движение Солнца

Суточное перемещение Солнца (как собственно и других небесных тел) по небу является следствием вращения Земли вокруг своей оси, которое направлено с запада на восток, а, соответственно, видимое движение Солнца при этом происходит с востока на запад. Однако из-за наличия наклона земной оси к плоскости орбиты вокруг Солнца, точки восхода/захода при обращении Земли вокруг Солнца постоянно смещаются, и в итоге восход/заход на востоке/западе происходит только вблизи равноденствий, которые приходятся на начало 20-ых чисел марта и сентября. Летом к Солнцу обращено северное полушарие Земли, соответственно в средних широтах точка восхода смещается к северо-востоку, а точка захода к северо-западу, а зимой Земля подставляет Солнцу южное полушарие и восход светила происходит на юго-востоке, а заход на юго-западе.

Годичное движение Солнца

Годичный путь Солнца относительно звёзд связан с обращением Земли вокруг Солнца. Конечно, из-за того что днём звёзд невидно, трудно отследить данное движение Солнца, хотя в течение суток за счёт этого движения − Солнце перемещается на фоне звёзд на целый градус (т.е. на два своих видимых размера). Однако о наличии этого движения говорит сменяющийся вместе с временами года вид звёздного неба, а конкретно наблюдаемые созвездия. К примеру, созвездие Ориона можно наблюдать на тёмном небе с осени и до середины весны, однако в остальную часть года Солнце находится слишком близко к этому созвездию (хотя непосредственно через него не проходит), а на дневном небе невооружённым глазом увидеть звёзды, составляющее это созвездие не представляется возможным. Солнце при наблюдении с Земли в течение года, перемещается по небу вдоль линии, называемой эклиптикой, которая обозначает плоскость земной орбиты (в более точном определении − плоскость орбиты центра масс системы Земля-Луна) и проходит через 13 созвездий (Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Змееносец, Стрелец, Козерог, Водолей и Рыбы). Поскольку вокруг Солнца Земля обращается по эллиптической орбите, то орбитальная скорость является непостоянной величиной, это естественно отражается и на видимом перемещении Солнца по эклиптике. Видимое движение также неравномерно – одну половину эклиптики Солнце проходит медленней (когда Земля более удалена от светила), а вторую – быстрее, за счёт этого в северном полушарии весна и лето несколько длиннее осени и зимы. Когда в северном полушарии лето – Земля находится от Солнца дальше всего и движется медленней по орбите, а когда зима – ближе всего и движется быстрее (в южном полушарии всё равно наоборот).

Видимое движение Луны

Плоскость лунной орбиты имеет наклон в 5 градусов к плоскости земной орбиты вокруг Солнца, таким образом, видимое движение Луны относительно звёзд проходит недалеко от линии эклиптики. Вот только скорость этого движения гораздо больше, чем у Солнца. Если Солнце перемещается относительно звёзд по небу на величину равную своему видимому диаметру за половину земных суток, то Луна преодолевает такое же расстояние примерно за 1 час, а поскольку Луну можно наблюдать на тёмном небе, то и отследить это смещение на фоне звёзд несложно. Луна движется по своей орбите в том же направлении, куда вращается Земля вокруг оси (против часовой стрелки при взгляде с северного полюса), так что видимое движение Луны на фоне звёзд будет происходить с запада на восток. В виду ещё большей эллиптичности лунной орбиты, чем земной, видимое движение Луны будет более неравномерным. Путь относительно звёзд (и вокруг Земли) Луна совершает за 27 суток 7 ч 43 мин 11,5 с. В новолуние Луна находится в том же направлении на небе, что и Солнце (т.е. между Землёй и Солнцем) и потому повёрнута неосвещённой стороной. Однако постепенно удаляясь всё дальше от светила на восток, начинает расти освещённый Солнцем край лунного диска и так до полнолуния. Полная Луна восходит в восточной части неба и примерно повторяет суточный путь Солнца полугодовалой давности. Таким образом, в северном полушарии в летние месяцы, когда Солнце восходит на северо-востоке, поднимается высоко и заходит на северо-западе − Луна в свою очередь восходит на юго-востоке, не поднимается высоко над горизонтом, и под утро садится на юго-западе (как и Солнце в течение дня в северном полушарии зимой). Наличие пересечений плоскостей лунной и земной орбит, даёт нам возможность наблюдать такие явления, как солнечные и лунные затмения. Однако они происходят только при одновременном соблюдении следующих независимых друг от друга условий – Луна на своём пути относительно звёзд должна быть близка к точке пересечения этого пути с эклиптикой, а также должно быть новолуние (для солнечного затмения) или полнолуние (для лунного).

Видимое движение планет

Орбитальные плоскости планет имеют наклон не больше нескольких градусов к плоскости земной орбиты, следовательно, их видимый путь относительно звёзд проходит недалеко от эклиптики, но вид траектории этого движения куда сложнее, чем у Солнца и Луны. Изначально двигаясь в том же направлении, что Луна и Солнце (с запада на восток (прямое движение)), планеты в какой-то момент начинают замедляться, останавливаются, а затем какое-то время двигаются с востока на запад (попятное движение), после чего снова замедляются и вновь переходят к прямому движению. Траектория движения при смене направлений имеет форму петли.

Движение более близких к Солнцу планет, чем Земля (нижних планет), несколько отличается от движения планет, которые дальше Земли (верхние планеты). Венера движется по небу быстрее Солнца в прямом направлении, обгоняет его, затем останавливается не более чем в 47 градусах от Солнца (это и есть точка максимального углового удаления от светила (восточная элонгация)), после чего переходит на попятное движение, снова проходит мимо Солнца и вновь останавливается не дальше 47 градусов от светила (западная элонгация) затем опять переходит на прямое движение. Также движется Меркурий, только размер петли будет меньше, поскольку Меркурий ближе к Солнцу и его угловое расстояние от светила совсем невелико, максимум 28 градусов. В случае Марса и других верхних планет, движение в прямом направлении будет медленней, чем у Солнца, следовательно, планеты будут постепенно отставать от него, находясь при этом всё западнее от светила. Когда планета будет в противоположном от Солнца направлении, её движение на фоне звёзд замедлится, и она перейдёт к попятному движению, которое скоро замедлится и вновь перейдёт к прямому, после чего планета начнёт сближение с Солнцем на небе. Чем дальше верхняя планета, тем меньше будет размер петли при перемене направлений движения.

Ретроградное движение

Перемены направлений движения обусловлены неодинаковой орбитальной скоростью планет. Попятное движение Венеры и Меркурия получается, когда они обгоняют Землю, двигаясь по своей орбите и находясь при этом с Землёй по одну сторону от Солнца. А в случае верхних планет, наоборот Земля обгоняет их и из-за этого они получают попятное движение. Петли же получаются из-за того, что планетные орбиты не лежат в одной плоскости, а имеют, пусть и небольшие, но наклоны относительно плоскости земной орбиты.

Видимое движение звёзд

Когда рассматривалось видимое движение тел Солнечной системы, очень часто упоминалась фраза «движение относительно звёзд», из-за чего может создаться впечатление, что звёзды совсем неподвижны. В действительности это не так, просто скорости звёзд настолько малы по сравнению с расстояниями до них, что практически невозможно заметить их движение невооружённым глазом даже в течение десятков лет. Лучше всего перемещение заметно у тех звёзд, которые обладают высокими реальными скоростями поперёк луча зрения наблюдателя и при этом ещё находятся в относительной близости от Солнца, чтобы эта скорость была хоть как-то заметна, потому что при удалении в сотни световых лет, даже при поперечных скоростях в сотни км/с, положение звезды будет изменяться крайне медленно. Среди звёзд (кроме Солнца) самым высоким собственным движением на небе обладает звезда Барнарда – очень тусклый красный карлик, который, несмотря на расстояние в 6 световых лет от Солнца, невооружённым глазом не виден. Но, тем не менее, эта звезда смещается по небу на 10 угловых секунд в год, что более чем в 180 раз меньше видимого диаметра полной Луны. Нетрудно догадаться, что примерно столько же лет нужно, чтобы звезда сместилась на фоне более далёких звёзд на небе на расстояние равное размеру Луны. Но это только одна звезда со столь большим собственным движением, у остальных звёзд эти движения значительно медленней.

В. Грибков

Дальнейшие исследования[ | ]

Являясь важным элементом убеждения людей в существовании «тёмной материи», новейший труд о кривых вращения галактик также бросает ей один из самых больших вызовов. Дальнейшее исследование кривых вращения галактик с низкой поверхностной яркостью (LSB галактик) в 1990 годах[4] и их позиции в соотношении Талли-Фишера[5] показало, что они не ведут себя так, как ожидалось.

Ещё больший вызов теории тёмной материи, или, по крайней мере, её самой популярной форме — холодной тёмной материи (CDM) бросает анализ центров галактик с низкой поверхностной яркостью. Множественные моделирования, основанные на «холодной тёмной материи» дали предсказания формы кривых вращения в центрах систем с преобладанием тёмной материи, таких как эти галактики. Наблюдения кривых вращения не показали предсказанной формы.[6] Эта так называемая «проблема порогового гало» (cuspy halo problem) тёмной холодной материи считается теоретическими космологами «послушной проблемой».

Эти теории тёмной материи продолжают поддерживаться, как объяснение кривых вращения галактики, потому что свидетельства существования тёмной материи получены не только из этих кривых вращения. Они также были успешны в моделировании формирования крупномасштабной структуры в распределении галактик и в объяснении динамики групп и скоплений галактик (как первоначально предложил Цвикки). Наличие темной материи также соответствует результатам наблюдения «гравитационной фокусировки» (гравилинзирования).[источник не указан 3802 дня

]

Апоп

Какие формы только не встречабтся во Вселенной.

В 2020 году астрономы заявили о наличии в нашей галактике уникальной системы. Она расположена в созвездии Наугольника и представляет собой тройную звездную систему, состоящую из двух звезд Вольфа-Райе и сверхгиганта. Научное название — 2XMM J160050.7–514245. Для просты ее прозвали Апоп. Название происходит из имени божества из египетской мифологии — огромного змея, олицетворяющего зло и Хаос, извечного врага бога солнца Ра. Уникальной ее делает то, что согласно нашим теориям должно произойти после ее звездного коллапса.

Когда звезды класса Вольфа-Райе погибают, они превращаются в сверхновые и создают очень мощные гамма-выбросы. Последнее является наиболее мощным явлением излучения энергетически заряженных частиц в известной нам Вселенной и никогда ранее не наблюдалось внутри Млечного Пути. Такие всплески происходят очень редко, но Апоп подает весомые надежды.

Визуально Апоп определяется как две звезды, но нижняя более крупная звезда на самом деле является двойной звездой Вольфа — Райе, состоящей из двух звезд, расположенных очень близко друг к другу. Третья звезда вращается вокруг двойной звезды на расстоянии около 1700 астрономических единиц (250 млрд. км) с периодом обращения, превышающим 10 тысяч лет. Система окружена облаками из звездного ветра и космической пыли. Скорость ветра здесь достигает 12 000 000 км/ч, а скорость вращения космической пыли составляет 2 000 000 км/ч.

Звезды Вольфа — Райе с быстрым вращением теоретически могут породить гамма-всплеск в ходе взрыва сверхновой. Звездная система 2XMM J160050.7–514245 подходит под это описание и может породить выброс двух гамма-джетов из своих полюсов. Потенциальный гамма-всплеск из данной системы не опасен для жизни на Земле, поскольку угол отклонения оси вращения звездной системы по отношению к Земле составляет примерно 30 градусов. Но зрелище будет незабываемым.

Альтернативы тёмной материи[ | ]

Существует несколько возможностей найти альтернативные тёмной материи объяснения кривым вращения галактик. Одна из самых обсуждаемых альтернатив — теория MoND (модифицированная ньютоновская динамика). Изначально предложенная ещё в 1983 году как феноменологическое объяснение, но которая, как теперь видно, имела и предсказательную силу для кривых вращения галактик с низкой поверхностной яркостью. Эта теория утверждает, что физика гравитации изменяется при больших масштабах, но до недавнего времени она не была релятивистской теорией. Однако, с развитием тензорно-скалярно-векторной гравитации (TeVeS) теории это изменилось. Более успешная альтернатива — это модифицированная гравитация Моффата (MOG), такая как, например, скалярно-тензорно-векторная гравитация (STVG). Джоэл Бронштейн и Джон Моффат приложили MOG к проблеме ротационных кривых галактик и показали её пригодность для выборки из более чем 100 LSB, HSB и карликовых галактик. Каждая из представленных кривых вращения галактик подходила без необходимости в скрытой массе, используя только доступные фотометрические данные (звёздное вещество и видимый газ).

Примечания[ | ]

  1. Врашение галактики (неопр.)
    .
  2. L. Volders.
    Neutral hydrogen in M 33 and M 101 (англ.) // Astronomy and Astrophysics : journal. — Vol. 14. — P. 323—334.
  3. A. Bosma, «The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types», PhD Thesis, Rijksuniversiteit Groningen, 1978, available online at the Nasa Extragalactic Database
  4. W. J. G. de Blok, S. McGaugh.
    The dark and visible matter content of low surface brightness disc galaxies (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 1997. — Vol. 290. — P. 533—552. available online at the Smithsonian/NASA Astrophysics Data System
  5. M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, S. McGaugh.
    The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 1995. — Vol. 273. — P. L35—L38. available online at the Smithsonian/NASA Astrophysics Data System
  6. W. J. G. de Blok, A. Bosma.
    High-resolution rotation curves of low surface brightness galaxies (англ.) // Astronomy and Astrophysics : journal. — 2002. — Vol. 385. — P. 816—846. available online at the Smithsonian/NASA Astrophysics Data System
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: