Общие сведения
Ускорение — это изменение скорости тела за определенный отрезок времени. В системе СИ ускорение измеряется в метрах в секунду за секунду. Также часто используются другие единицы. Ускорение может быть постоянным, например ускорение тела в свободном падении, а может изменяться, например ускорение двигающегося автомобиля.
Инженеры и дизайнеры учитывают ускорение при проектировании и изготовлении автомобилей. Водители используют знания о том как быстро ускоряет или замедляет скорость их автомобиль во время вождения. Также знания об ускорении помогают строителям и инженерам предотвратить или свести к минимуму повреждения, вызванные резким ускорением или замедлением, связанным с ударами или толчками, например, при столкновениях автомобилей или во время землетрясений.
Пирамида «Трансамерика» в Сан-Франциско, США. Это здание устойчиво к силам кручения, которые действуют на него во время сейсмических явлений.
Защита от ускорений с помощью амортизирующих и демпфирующих конструкций
Если строители учитывают возможные ускорения, здание становится более устойчиво к толчкам, что помогает спасти жизнь людей во время землетрясений. В местах с высокой сейсмичностью, например в Японии, здания строят на специальных платформах, которые уменьшают ускорение и смягчают толчки. Конструкция этих платформ похожа на подвеску в автомобилях. Упрощенная подвеска также используется в велосипедах. Ее чаще устанавливают на горных велосипедах, чтобы уменьшить неприятные ощущения, травмы, а также повреждение велосипеда из-за резких ударных ускорений при движении по неровным поверхностям. Мосты также устанавливают на подвесках, чтобы уменьшить ускорение, которое придают мосту движущиеся по нему автомобили. Ускорения, вызванные движением внутри и снаружи зданий, мешают музыкантам в музыкальных студиях. Для его уменьшения всю студию звукозаписи подвешивают на демпфирующих устройствах. Если музыкант устраивает домашнюю студию звукозаписи в помещении без достаточной звукоизоляции, то подвесить ее в уже построенном здании очень сложно и дорого. В домашних условиях устанавливают на подвески только пол. Поскольку влияние ускорения уменьшается с увеличением массы, на которую оно воздействует, вместо использования подвесок иногда утяжеляют стены, пол и потолок. Потолки тоже иногда устраивают подвесными, так как это не так сложно и дорого сделать, но помогает уменьшить проникновение в помещение внешних шумов.
Ускорение в физике
Второй закон Ньютона
Второй закон Ньютона
Согласно второму закону Ньютона сила, действующая на тело, равна произведению массы тела и ускорения. Силу можно вычислить с помощью формулы F = ma, где F — сила, m — масса, и a — ускорение. Так сила, действующая на тело, изменяет его скорость, то есть придает ему ускорение. Согласно этому закону ускорение зависит не только от величины силы, которая толкает тело, но и пропорционально зависит от массы тела. То есть, если сила действует на два тела, А и B, и B — тяжелее, тогда B будет двигаться с меньшим ускорением. Эта склонность тел противостоять изменению в ускорении называется инерцией.
Мотоцикл, двигающийся с ускорением. Тур де Бос 2010, город Квебек (Канада).
Инерцию легко увидеть в повседневной жизни. Например, автомобилисты не носят шлем, а мотоциклисты обычно путешествуют в шлеме, и часто — в другой защитной одежде, например кожаных куртках с утолщениями. Одна из причин — при столкновении с автомобилем более легкий мотоцикл и мотоциклист быстрее изменят свою скорость, то есть начнут двигаться с большим ускорением, чем автомобиль. Если его не накроет мотоциклом, то мотоциклист, вероятно, вылетит из сидения мотоцикла, так как он еще легче, чем мотоцикл. В любом случае мотоциклист получит серьезные травмы, в то время как водитель — гораздо меньшие, так как автомобиль и водитель получат при столкновении намного меньшее ускорение. В этом примере не учитывается сила всемирного тяготения; предполагается, что она пренебрежимо мала по сравнению с другими силами.
Ускорение и движение по кругу
Велосипедисты испытывают центростремительное ускорение на поворотах. Тур де Бос 2010, город Квебек (Канада).
У тела, которое движется по кругу со скоростью одинаковой величины — переменная векторная скорость, так как его направление постоянно изменяется. То есть, это тело движется с ускорением. Ускорение направлено в сторону оси вращения. В этом случае она в центре окружности, которая является траекторией движения тела. Это ускорение, а также вызывающая его сила, называются центростремительными. Согласно третьему закону Ньютона, у каждой силы есть противодействующая ей сила, действующая в противоположном направлении. В нашем примере эта сила называется центробежной. Именно она удерживает вагонетки на американских горках, даже когда те двигаются в перевернутом состоянии по вертикальным круговым рельсам. Центробежная сила толкает вагонетки от центра окружности, созданной рельсами, так что они прижимаются к рельсам.
Ускорение и сила притяжения
Гравитационное притяжение планет — одна из основных сил, которая действует на тела и придает им ускорение. Например, эта сила притягивает к поверхности Земли тела, находящиеся рядом с Землей. Благодаря этой силе тело, которое отпустили рядом с поверхностью Земли, и на которое не действуют никакие другие силы, находится в свободном падении, пока не столкнется с поверхностью Земли. Ускорение этого тела, называемое ускорением свободного падения, равно 9,80665 метров в секунду за секунду. Эта постоянная величина обозначается g и ее часто используют, чтобы определить вес тела. Так как согласно второму закону Ньютона F = ma, то вес, то есть сила, которая действует на тело — это произведение массы и ускорения свободного падения g. Массу тела легко вычислить, поэтому вес тоже легко найти. Стоит заметить, что слово «вес» в обиходе часто обозначает свойство тела, массу, а не силу.
Ускорение свободного падения — разное для разных планет и астрономических объектов, так как оно зависит от их массы. Ускорение свободного падения вблизи от Солнца в 28 раз больше чем земное, вблизи Юпитера больше в 2,6 раза, а возле Нептуна — в 1,1 раза. Ускорение рядом с другими планетами меньше земного. Например, ускорение у поверхности Луны равно 0,17 ускорения у поверхности Земли.
Физическая сущность[ | ]
Две компоненты ускорения свободного падения на Земле g
: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна
GM/r
2 и центробежная, равная ω2
a
, где
a
— расстояние до земной оси, ω — угловая скорость вращения Земли.
Для определённости будем считать, что речь идёт об ускорении свободного падения на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения
, вызванного земным притяжением, и
центростремительного ускорения
, связанного с вращением Земли.
Центростремительное ускорение[ | ]
Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a
от оси вращения, центростремительное ускорение равно
ω
2
a
, где ω — угловая скорость вращения Земли, определяемая выражением
ω
= 2π/
T
, в котором
Т
— время одного оборота вокруг своей оси (звёздные сутки), равное для Земли 86164 секунды. Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с2, причём на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.
Гравитационное ускорение[ | ]
Гравитационное ускорение на различной высоте h
над уровнем моря
h , км | g , м/с2 | h , км | g , м/с2 |
0 | 9,8066 | 20 | 9,7452 |
1 | 9,8036 | 50 | 9,6542 |
2 | 9,8005 | 80 | 9,5644 |
3 | 9,7974 | 100 | 9,505 |
4 | 9,7943 | 120 | 9,447 |
5 | 9,7912 | 500 | 8,45 |
6 | 9,7882 | 1000 | 7,36 |
8 | 9,7820 | 10 000 | 1,50 |
10 | 9,7759 | 50 000 | 0,125 |
15 | 9,7605 | 400 000 | 0,0025 |
В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связано с его массой M
следующим соотношением:
g = G M r 2 {\displaystyle g=G{\frac {M}{r^{2}}}} ,
где G
— гравитационная постоянная (6,67430(15)·10−113·−2·−1)[6], а
r
— радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрично. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо наоборот по известной массе и радиусу определить ускорение свободного падения на поверхности.
Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.
Гравитационное ускорение на высоте h
над поверхностью Земли (или иного космического тела) можно вычислить по формуле:
g ( h ) = G M ( r + h ) 2 {\displaystyle g(h)={\frac {GM}{(r+h)^{2}}}} , где M
— масса планеты.
Ускорение и транспортные средства
Тесты на ускорение для автомобилей
Существует ряд тестов для измерения характеристик автомобилей. Один из них направлен на то, чтобы проверить их ускорение. Для этого измеряют время, за которое автомобиль разгоняется с 0 до 100 километров (62 мили) в час. В странах, где не используют метрическую систему, проверяют разгон с нуля до 60 миль (97 километров) в час. Машины с самым быстрым разгоном доходят до этой скорости примерно за 2,3 секунды, что меньше, чем время, за которое тело достигнет такой скорости в свободном падении. Существуют даже программы для мобильных телефонов, которые помогают вычислить это время разгона, используя встроенные акселерометры телефона. Впрочем, трудно сказать насколько точны такие вычисления.
Ускорение свободного падения на Земле[ | ]
Ускорение свободного падения у поверхности Земли зависит от широты, времени суток, атмосферного давления и других факторов. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:
g = 9,780 318 ( 1 + 0,005 302 sin 2 φ − 0,000 006 sin 2 2 φ ) − 0,000 003086 h , {\displaystyle g=9{,}780318(1+0{,}005302\sin ^{2}\varphi -0{,}000006\sin ^{2}2\varphi )-0{,}000003086h,} где φ {\displaystyle \varphi } — широта рассматриваемого места, h {\displaystyle h} — высота над уровнем моря в метрах.
Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли, дополнив её поправками, связанными с вращением Земли, приливными воздействиями и другими факторами.
Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.
Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счёт центробежных сил, возникающих при вращении планеты, а также потому, что радиус r
на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения
g
несколько отличаются от следствий из этой упрощённой модели. Так, самое низкое значение
g
зафиксировано на горе Уаскаран в Перу (9,7639 м/с²) в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от северного полюса[9].
Ускорение свободного падения для некоторых городов | ||||
Город | Долгота | Широта | Высота над уровнем моря, м | Ускорение свободного падения, м/с2 |
Алматы | 76,85 в.д. | 43,22 с.ш. | 786 | 9.78125 |
Берлин | 13,40 в.д. | 52,50 с.ш. | 40 | 9,81280 |
Будапешт | 19,06 в.д. | 47,48 с.ш. | 108 | 9,80852 |
Вашингтон | 77,01 з.д. | 38,89 с.ш. | 14 | 9,80188 |
Вена | 16,36 в.д. | 48,21 с.ш. | 183 | 9,80860 |
Владивосток | 131,53 в.д. | 43,06 с.ш. | 50 | 9,80424 |
Гринвич | 0,0 в.д. | 51,48 с.ш. | 48 | 9,81188 |
Каир | 31,28 в.д. | 30,07 с.ш. | 30 | 9,79317 |
Киев | 30,30 в.д. | 50,27 с.ш. | 179 | 9,81054 |
Мадрид | 3,69 в.д. | 40,41 с.ш. | 667 | 9,79981 |
Минск | 27,55 в.д. | 53,92 с.ш. | 220 | 9,81347 |
Москва | 37,61 в.д. | 55,75 с.ш. | 151 | 9,8154 |
Нью-Йорк | 73,96 з.д. | 40,81 с.ш. | 38 | 9,80247 |
Одесса | 30,73 в.д. | 46,47 с.ш. | 54 | 9.80735 |
Осло | 10,72 в.д. | 59,91 с.ш. | 28 | 9,81927 |
Париж | 2,34 в.д. | 48,84 с.ш. | 61 | 9,80943 |
Прага | 14,39 в.д. | 50,09 с.ш. | 297 | 9,81014 |
Рим | 12,99 в.д. | 41,54 с.ш. | 37 | 9,80312 |
Стокгольм | 18,06 в.д. | 59,34 с.ш. | 45 | 9,81843 |
Токио | 139,80 в.д. | 35,71 с.ш. | 18 | 9,79801 |