Звезды гиганты и сверхгиганты

Красный гигант — звезда поздних спектральных классов с высокой светимостью и протяжёнными оболочками. Примерами красных гигантов являются Арктур, Альдебаран, Гакрукс и Мира A.

Красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

Молодые и старые Красные гиганты

Звёзды в процессе своей эволюции могут достигать поздних спектральных классов и высоких светимостей на двух этапах своего развития: на стадии звездообразования и поздних стадиях эволюции.

Стадия, на которой молодые звёзды наблюдаются как красные гиганты, зависит от их массы. В это время звезда излучает за счёт гравитационной энергии, выделяющейся при сжатии. По мере сжатия температура поверхности таких звёзд растёт, но вследствие уменьшения размеров и площади излучающей поверхности падает светимость. В конечном итоге в их ядрах начинается реакция термоядерного синтеза гелия из водорода (протон-протонный цикл, а для массивных звёзд также CNO-цикл), и молодая звезда выходит на главную последовательность.

На поздних стадиях эволюции звёзд после выгорания водорода в их недрах и образования «пассивного» (не участвующего в термоядерных реакциях) гелиевого ядра звёзды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов. Перед тем как перейти в стадию красного гиганта, звезда проходит промежуточную стадию — стадию субгиганта. Субгигант — это звезда, в ядре которой уже прекратились термоядерные реакции с участием водорода, но горение гелия ещё не началось, так как гелиевое ядро недостаточно разогрето.

В современной астрофизике термин красные гиганты относится, как правило, к таким проэволюционировавшим звёздам, сошедшим с главной последовательности; молодые звёзды, не вышедшие на главную последовательность, обобщённо называют протозвёздами.

Происхождение и строение[ | ]

«Молодые» и «старые»[ | ]

Звёзды в процессе своей эволюции могут достигать поздних спектральных классов и высоких светимостей на двух этапах своего развития: на стадии звездообразования и поздних стадиях эволюции.

Стадия, на которой молодые звёзды наблюдаются как красные гиганты, зависит от их массы — этот этап длится от ~ 103 лет для массивных звёзд с массами М

≈ 10
M
⊙ и до ~ 108 лет для маломассивных звёзд с
М
≈ 0,5
M
⊙. В это время звезда излучает за счёт гравитационной энергии, выделяющейся при сжатии. По мере сжатия температура поверхности таких звёзд растёт, но вследствие уменьшения размеров и площади излучающей поверхности падает светимость. В конечном итоге в их ядрах начинается реакция термоядерного синтеза гелия из водорода (протон-протонный цикл, а для массивных звёзд также CNO-цикл), и молодая звезда выходит на главную последовательность.

На поздних стадиях эволюции звёзд после выгорания водорода в их недрах и образования «пассивного» (не участвующего в термоядерных реакциях) гелиевого ядра звёзды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга — Рассела: этот этап длится ~ 10 % от времени «активной» жизни звёзд, то есть этапов их эволюции, в ходе которых в звёздных недрах идут реакции нуклеосинтеза. Звёзды главной последовательности с массами М

< 10
M
⊙ превращаются сначала в красные гиганты, а затем — в красные сверхгиганты; звёзды с
М
> 10
M
⊙ — непосредственно в красные сверхгиганты. Перед тем как перейти в стадию красного гиганта, звезда проходит промежуточную стадию — стадию субгиганта. Субгигант — это звезда, в ядре которой уже прекратились термоядерные реакции с участием водорода, но горение гелия ещё не началось, так как гелиевое ядро недостаточно разогрето.

В современной астрофизике термин красные гиганты

относится, как правило, к таким проэволюционировавшим звёздам, сошедшим с главной последовательности; молодые звёзды, не вышедшие на главную последовательность, обобщённо называют протозвёздами или по конкретному типу, например, звёзды типа T Тельца.

Строение красных гигантов, неустойчивости в их оболочках и потеря ими массы[ | ]

Протопланетарная туманность Красный Прямоугольник: асимметричный выброс газопылевой материи красным гигантом
И «молодые», и «старые» красные гиганты имеют схожие наблюдаемые характеристики, объясняющиеся сходством их внутреннего строения — все они имеют горячее плотное ядро и очень разреженную и протяжённую оболочку (англ. envelope). Наличие протяжённой и относительно холодной оболочки приводит к интенсивному звёздному ветру: потери массы при таком истечении вещества достигают 10−6—10−5M

⊙ в год. Интенсивному звёздному ветру способствует несколько факторов:

  • Высокая светимость красных гигантов в сочетании с огромной протяжённостью их атмосфер (радиусы в 102—103R
    ⊙) приводит к тому, что на границах их фотосфер давление излучения на газовую и пылевую компоненты их оболочек становится соизмеримым с силами тяготения, что вызывает вынос вещества.
  • Ионизация областей оболочек, лежащих ниже фотосферы, делает их существенно непрозрачными для электромагнитного излучения, что приводит к конвекционному механизму переноса энергии. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.
  • В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимся изменением теплового режима звезды. На фотографии туманности Красный Прямоугольник чётко заметны волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний. Периодические колебания оболочек во многих случаях приобретают заметный с огромных расстояний масштаб: многие «старые» красные гиганты являются пульсационными переменными (см. ниже), переменными являются также и некоторые «молодые красные гиганты» типа T Тельца.

Конвективные механизмы могут приводить к выносу в атмосферу звезды продуктов нуклеосинтеза из внутренних ядерных источников, что является причиной наблюдаемых аномалий химического состава красных гигантов, в частности, повышенного содержания углерода.

Средняя плотность красных гигантов может быть в миллион раз меньше плотности воды (для сравнения, средняя плотность Солнца примерно равна плотности воды, 1 г/см3). При этом отношение средней плотности к плотности ядра может составлять 1:108 (у Солнца примерно 1:50). Около 10 % массы красного гиганта приходится на его очень малое по размерам ядро, в котором (или в наружном слое которого) происходят термоядерные реакции; остальная часть массы звезды приходится на очень протяжённую оболочку, которая переносит выделившуюся в ядре энергию к поверхности.

На поверхности красных гигантов ускорение свободного падения очень невелико. Так, если звезда с массой, равной массе Солнца, превращается в красный гигант и увеличивает свой радиус до размеров орбиты Земли (1 а.е.), то ускорение свободного падения на её поверхности будет равно центростремительному орбитальному ускорению Земли, то есть 0,6 см/с2, или 0,0006 ; для сравнения, ускорение свободного падения на поверхности Солнца равно 27,8 . Низкая поверхностная гравитация и высокая светимость звезды способствуют потере вещества из её оболочки.

Строение красных гигантов

И «молодые», и «старые» красные гиганты имеют схожие наблюдаемые характеристики, объясняющиеся сходством их внутреннего строения — все они имеют горячее плотное ядро и очень разреженную и протяжённую оболочку. Наличие протяжённой и относительно холодной оболочки приводит к интенсивному звёздному ветру: потери массы при таком истечении вещества достигают 10−6—10−5 масс Солнца в год.

Средняя плотность красных гигантов может быть в миллион раз меньше плотности воды (для сравнения, средняя плотность Солнца примерно равна плотности воды, 1 г/см3). При этом отношение средней плотности к плотности ядра может составлять 1:108 (у Солнца примерно 1:50). Около 10% массы красного гиганта приходится на его очень малое по размерам ядро, в котором (или в наружном слое которого) происходят термоядерные реакции; остальная часть массы звезды приходится на очень протяжённую оболочку, которая переносит выделившуюся в ядре энергию к поверхности.

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.
Красный гигант Автор статьи: astroson.com 2017-04-20

Красные гиганты — переменные звёзды[ | ]

Фотография Миры в ультрафиолете. «Хвост» звёздной атмосферы обусловлен влиянием звезды-компаньона

  • Мириды (радиально пульсирующие долгопериодические переменные типа Ми́ры — Омикрона Кита) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2,5m до 11m, в спектрах присутствуют эмиссионные линии.
  • SR — полуправильные пульсирующие переменные гиганты спектрального класса М с периодом от 20 дней до нескольких лет и вариациями блеска ~ 3m (пример: Z Большой Медведицы (нем.)русск.).
  • SRc — полуправильные пульсирующие переменные сверхгиганты спектрального класса М (примеры: μ Цефея, Бетельгейзе, α Геркулеса).
  • Lb — неправильные медленные пульсирующие переменные гиганты спектрального класса K, M, C, S (примеры: CO Cyg).
  • Lc — неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M с вариациями блеска ~ 1m (примеры: TZ Cas).

Солнце как красный гигант

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся горение гелия, и гелий начнёт превращаться в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.)[3][4][5]Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. Земля, если не разделит их судьбу, будет разогрета настолько, что шансов на сохранение жизни не будет никаких[6][7]. Океаны же испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет[8].

На стадии красного гиганта Солнце будет находиться приблизительно 100 миллионов лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысячелетий, а белый карлик будет остывать в течение от многих миллиардов до 100 квинтиллионов лет.

Эволюция звезд — красный гигант

Красный гигант, а также сверхгигант – это название космических объектов с протяженными оболочками и высокой светимостью. Они относятся к поздним спектральным классам К и М. Их радиусы превосходят солнечный в сотни раз. Максимальное излучение этих звезд приходится на инфракрасную и красную области спектра. На диаграмме Герцшпрунга — Ресселла красные гиганты располагаются над линией главной последовательности, их абсолютная звездная величина колеблется в пределах чуть выше нуля или имеет отрицательное значение.

Площадь такой звезды превосходит площадь Солнца минимум в 1500 раз, а при этом ее диаметр приблизительно в 40 раз больше. Так как разница в абсолютной величине с нашим светилом составляет около пяти, выходит, что красный гигант излучает в сто раз больше света. Но при этом он значительно холоднее. Солнечная температура вдвое превосходит показатели красного гиганта, и поэтому на единицу площади поверхности светило нашей системы излучает света в шестнадцать раз больше.

Видимый цвет звезды напрямую зависит от температуры поверхности. Наше Солнце раскаляется добела и имеет сравнительно небольшие размеры, поэтому его называют желтым карликом. Более холодные звезды имеют оранжевый и красный свет. Каждая звезда в процессе своей эволюции может достигнуть последних спектральных классов и стать красным гигантом на двух этапах развития. Это происходит в процессе зарождения на стадии звездообразования или же на завершающей ступени эволюции. В это время красный гигант начинает излучать энергию за счет собственной гравитационной энергии, которая выделяется при его сжатии.

По мере того как сжимается звезда, температура ее возрастает. При этом, вследствие сокращения размеров поверхности, в разы падает светимость звезды. Она затухает. Если это «молодой» красный гигант, то в конечном итоге в его недрах запустится реакция термоядерного синтеза из водорода гелия. После чего молодая звезда выйдет на главную последовательность. У старых звезд иная судьба. На поздних этапах эволюции водород в недрах светила выгорает полностью. После чего звезда сходит с главной последовательности. По диаграмме Герцшпрунга — Рассела она передвигается в область сверхгигантов и красных гигантов. Но перед тем как перейти на эту стадию, она проходит промежуточный этап – субгиганта.

Субгигантами называют звезды, в ядре которых уже прекратились водородные термоядерные реакции, но при этом горение гелия еще не началось. Это происходит, потому что ядро недостаточно разогрелось. Примером такого субгиганта может быть Артур, расположенный в созвездии Волопаса. Он является оранжевой з

солнце красный гигант

Желтый карлик Солнце является сравнительно молодой звездой. Ее возраст оценивается в 4,57 миллиарда лет. На главной последовательности оно будет оставаться еще приблизительно 5 миллиардов лет. Но ученым удалось смоделировать мир, в котором Солнце — красный гигант. Размеры его вырастут в 200 раз и достигнут орбиты Земли, испепелив Меркурий и Венеру. Конечно, жизнь к этому времени будет уже невозможной. На этой стадии Солнце просуществует приблизительно еще 100 миллионов лет, после чего оно превратится в планетную туманность и станет белым карликом.

Как появляются звезды-гиганты или немного о небесной эволюции

Астрономам известно множество звезд различных типов: горячих и холодных, больших и маленьких. Для классификации этих небесных объектов используются их абсолютные величины и спектральные характеристики. Спектр дает представление не только о температуре, но и о химическом составе небесного объекта.

Предлагаем ознакомиться Температура плавления осмия

В 1910 году ученые Эйнар Герцшпрунг и Генри Рассел, независимо друг от друга разработали диаграмму, значительно упрощающую классификацию звездных объектов и дающую четкое представление об этапах их развития. Кроме того, она наглядно демонстрирует взаимную зависимость спектрального класса, звездной величины и светимости.

Звезды расположены на данной диаграмме не хаотично, а образуют четко выраженные участки. 90% от их общего количества находятся в области, которую называют главной последовательностью. Кроме нее, на диаграмме существует область красных гигантов и сверхгигантов, в которой расположены светила, находящиеся на завершающем этапе своей эволюции.

Диаграмма Герцшпрунга — Рассела

Данный феномен очень просто объяснить: большую часть жизни звезда получает энергию от реакций, протекающих в ее центральной области. Это протон-протонный цикл, а для массивных звезд — CNO-цикл. После прекращения термоядерных реакций формируется гелиевое ядро, и звезда становится красным гигантом.

Дальнейшая судьба светила зависит от его массы. Если она меньше десяти солнечных, то звезда превращается в красного гиганта, а затем в сверхгиганта, но если больше, то сразу в сверхгиганта. Существует и промежуточный этап – стадия субгиганта, во время которой горение гелия еще не началось, а слияние в ядре водорода уже не происходит.

Диаграмма

Но и это еще не финал. Стадия красного гиганта относительно коротка: она занимает примерно десятую часть от общего времени существования светила.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: