Радиоастрономия на Земле, Луне и в космосе

Радиотелескоп

Наблюдательная астрономия прошла большой путь с того времени, когда Галилео Галилей увидел Солнечную систему в первый в мире телескоп. С тех пор понимание человеком космоса постоянно развивается. Чем больше информации человечество получает из космоса, тем больше вопросов возникает об устройстве вселенной. Для разрешения этих вопросов непрерывно совершенствуются инструменты наблюдения. В результате этих процессов в первой половине двадцатого века возникло новое направление в науке о космосе – радиоастрономия.

Явление интерференции электромагнитных волн

Следующим шагом в изучении космического пространства стала идея применения явления интерференции электромагнитных волн. Человек с помощью одного глаза видит гораздо хуже, перестает точно определять расстояние до объекта и его размеры. А если бы у человека было 3 глаза и больше? Связанные между собой несколько телескопов позволили увеличить угловое разрешение в несколько миллионов раз. Это позволило точно определять координаты источников радиоволн и сопоставлять их с оптическими наблюдениями.

Одним из наиболее мощных и современных радиоинтерферометров является ALMA – комплекс, включающий в себя 66 антенн разного диаметра и работающий в миллиметровом диапазоне. Этот телескоп изучает процессы, происходившие в первые миллионы лет после образования вселенной, например формирование звезд.

Астрономические источники[ | ]

Основная статья: Астрономический радиоисточник

Радиоастрономия привела к значительному развитию астрономии, особенно с открытием нескольких новых классов объектов, включая пульсары, квазары и радиогалактики. Всё это благодаря тому, что радиоастрономия позволяет увидеть то, что невозможно обнаружить с помощью оптической астрономии. Такие объекты представляют собой самые далёкие и мощные физические явления во вселенной.

Реликтовое излучение также было впервые обнаружено с помощью радиотелескопов. Кроме того, радиотелескопы использовались и для исследования ближайших к Земле астрономических объектов, включая наблюдения Солнца и солнечной активности, и радарное картографирование планет солнечной системы.

Развитие радиоастрономии

Темпы развития радиоастрономии ограничиваются не только размерами телескопов, но и уровнем технологий обработки и передачи информации. К счастью, интенсивный рост производственных возможностей современной вычислительной техники позволяет преодолеть эту проблему. Так, уже в 2020 году будет построен колоссальный радиоинтерферометр SKA.

Собирающая поверхность этого телескопа превысит квадратный километр. Это будет достигнуто за счет того, что антенны этого телескопа разнесены на расстояние около 3000 км. Часть антенн будет размещена в ЮАР, часть в Австралии, часть в Новой Зеландии. СКА будет иметь чувствительность в 50 раз выше, чем у других ныне работающих телескопов. Сверхдлинные линии связи этого телескопа должны иметь пропускную способность выше, чем весь современный интернет-трафик, а для обработки информации потребуется суперкомпьютер. В июле 2020 года австралийская часть СКА была введена в строй и в первый сеанс работы открыла тысячи неизвестных галактик.

К сожалению, на Земле количество мест, пригодных для радиоастрономии, сильно ограничено по причине Причиной этому служат природные условия, радиоизлучение, создаваемое человеком и размеры нашей планеты. Радиотелескопы на земле можно расположить по разным континентам – но не более. В связи с этим целесообразно создать космические аппараты, которые будут помогать земным радиотелескопам. В 2011 году был запущен космический телескоп «РадиоАстрон», разработанный НПО им. Лавочкина. Данная система состоит из космического радиотелескопа и системы наземных телескопов – база у системы сравнима с расстоянием до Луны – около 340 тыс. км. Это позволило достичь наибольшего углового разрешения за историю астрономии. Создания еще большего интерферометра возможно, к примеру, с помощью использования двух телескопов, размещенных в точках Лагранжа L4-L5 системы Земля-Солнце. Это позволит создать интерферометр с плечом в миллионы километров.

Радиоастрономия

Радиоастрономия — это раздел астрономии, в котором небесные объекты — Солнце, звёзды, галактики и др. — исследуются на основе наблюдений излучаемых ими радиоволн в диапазоне от долей мм до нескольких км.

Радиоастрономические наблюдения, в отличие от оптических, можно проводить и в облачную погоду, т.к. атмосферные условия слабо влияют на прохождение радиоволн (кроме коротковолнового сантиметрового и миллиметрового диапазонов) .

Основное устройство для радиоастрономических наблюдений называется радиотелескоп

, который, как правило, представляет собой параболическую антенну большого радиуса (чем больше радиус – тем выше разрешающая способность), в фокусе которой находится приёмное устройство.

Внешний вид типичного радиотелескопа

Разрешающая способность радиотелескопов определяется по простой формуле: в радианах – λ/D, (а в градусах — 180λ / πD), где π=3,1415926… (математическая константа, равная отношению длины окружности к её диаметру), λ — длина волны, на которой проводятся наблюдения, а D – диаметр антенны радиотелескопа (длина волны и диаметр антенны должны быть в одной и той же единице измерения). Чем больше длина антенны и меньше длина волны – тем выше чувствительность радиотелескопа.

С одной стороны, длина волны радиоволн на несколько порядков ниже, чем у видимого света, поэтому при том же размере чувствительность радиотелескопа ниже, чем у обычного. С другой стороны, радиотелескоп можно сделать значительно больше по размерам. Крупнейший из наземных оптических телескопов по состоянию на начало XXI века имеют размеры зеркала лишь чуть больше 10 метров, в то время как имеется множество радиотелескоп с вращающимися антеннами размером десятки метров, а крупнейший одиночный телескоп РАТАН-600 имеет диаметр антенны 600 метров.

Более того, возможно явление радиоинтерферометрии

(или просто
интерферометрии
), когда два сравнительно небольших радиотелескопа, направленных в параллельном направлении и настроенные на одну длину волны, действуют как один большой радиотелескоп, диаметр антенны которого равен расстоянию между ними (которое называют
длиной базы
телескопа-интерферометра). Уже стало привычным явлением не только радионаблюдения с использованием двух радиотелескопов, находящихся на двух противоположных точках земного шара (что соответствует телескопу с размером антенны свыше 10 тысяч км), но и телескопов, один из которых находится на Земле, а второй – в космосе, что позволяет увеличить длину базы до десятков тысяч километров.

Вообще говоря, использовать свойство интерферометрии можно для повышения чувствительности не только радиотелескопов, но и телескопов, работающих на других длинах волн, в том числе и оптических, но это будет значительно сложнее.

Подробности радиоастрономических наблюдений

. Путём теоретических исследований было установлено, что почти все наблюдаемые радиоастрономические явления связаны с известными в физике механизмами радиоизлучения: тепловым излучением твёрдых тел (планеты и малые тела Солнечной системы); тормозным излучением тепловых электронов в полях ионов космической плазмы (газовые туманности в Галактике, атмосфера Солнца и звёзд); магнитотормозным излучением тепловых, субрелятивистских и релятивистских электронов в космических магнитных полях (активные области на Солнце, пояса радиации вокруг некоторых планет, радиогалактики, квазары), различными коллективными процессами в плазме (вспышки радиоизлучения на Солнце и Юпитере и др. явления). Наряду со сплошным (непрерывным) спектром радиоизлучения, обусловленным перечисленными причинами, обнаружено также монохроматическое (т.е. на одной длине волны) излучение небесных объектов. Основными механизмами образования спектральных радиолиний являются квантовые переходы между различными атомными и молекулярными энергетическими уровнями.

Особенно большую роль в радиоастрономии играет линия нейтрального водорода с длиной волны 21 см, возникающая при переходах между сверхтонкими подуровнями в атоме водорода, и рекомбинационные линии возбуждённого водорода. Водород – самый распространённый элемент во Вселенной, имеющийся во всех небесных телах, поэтому излучение на этой линии наиболее эффективно.

С помощью радиотелескопов проводятся поисковые обзоры неба и детально исследуются отдельные объекты. Обнаруженные радиоисточники заносятся в каталоги; к 1974 опубликовано около 100 каталогов, в которых приведены сведения о десятках тысяч объектов, большая часть из которых расположена далеко за пределами нашей Галактики.

По объектам исследования радиоастрономия условно делится на солнечную, планетную, галактическую и метагалактическую (внегалактическую).

Солнечная радиоастрономия изучает атмосферу Солнца (хромосферу, корону, сверхкорону, солнечный ветер). Основная проблема — выяснение природы активности Солнца. Характер радиоизлучения Солнца различен в разных диапазонах. Радиоизлучение в миллиметровом диапазоне, связанное с тормозным излучением электронов плазмы солнечной хромосферы в электрических полях ионов, относительно спокойно. В сантиметровом диапазоне радиоизлучение в значительной степени зависит от тормозного и магнитотормозного излучения горячей намагниченной плазмы над солнечными пятнами. Наконец, в метровом диапазоне волн радиоизлучение Солнца очень нестабильно и имеет форму всплесков над относительно стабильным уровнем тормозного излучения солнечной короны. Мощность всплесков иногда в десятки миллионов раз превосходит излучение спокойной короны. Эти всплески, по-видимому, вызываются прохождением потоков быстрых частиц сквозь атмосферу Солнца. Солнечный ветер исследуется по рассеянию в нём радиоволн, идущих от удалённых радиоисточников.

Планетная радиоастрономия исследует тепловые и электрические свойства поверхности планет и их спутников, их атмосферы и радиационные пояса. Радиоастрономические наблюдения существенно дополняют результаты, полученные в оптическом диапазоне; особенно это относится к планетам, поверхность которых скрыта от земного наблюдателя плотными облаками. Радиоастрономические наблюдения позволили измерить температуру поверхности Венеры, оценить плотность её атмосферы; благодаря таким наблюдениям обнаружены радиационные пояса Юпитера и мощные вспышки радиоизлучения, возникающие в его атмосфере.

Радиолокационные методы позволяют с очень высокой точностью измерять расстояния до планет, периоды их вращения, осуществить картографирование поверхностей планет.

Галактическая радиоастрономия изучает структуру нашей Галактики, активность её ядра, физическое состояние межзвёздного газа и природу различных галактических источников радиоизлучения. Мощными галактическими источниками радиоизлучения являются остатки сверхновых звёзд, а также облака газа, ионизованного ультрафиолетовым излучением звёзд. Галактическая радиоастрономия изучает также структуру магнитного поля Галактики и способствует решению проблемы происхождения космических лучей.

Самыми мощными внегалактическими радиоисточниками являются квазары

, видимые в оптическом диапазоне, но совершенно не похожие на обычные галактики. Радиоизлучение квазаров переменно: оно заметно изменяется за время от нескольких недель до нескольких лет, что может быть только при относительно малых линейных размерах радиоизлучающих областей в них. Это подтверждается прямыми наблюдениями структуры квазаров: с помощью интерферометров с большой базой обнаружены детали размером менее 10-3сек дуги, которые могут быть облаками или потоками ультрарелятивистских частиц, движущихся в магнитных полях. Детальная структура квазаров пока изучена недостаточно, а природа их ещё неизвестна.

Помимо дискретных внегалактических радиоисточников, наблюдается также фоновое излучение метагалактики. Оно складывается из совокупного радиоизлучения большого числа не наблюдаемых раздельно слабых радиоисточников и изотропного излучения, соответствующего температуре около 2,7 К. Последнее представляет собой излучение вещества, заполняющего метагалактику на ранней стадии развития Вселенной, когда это вещество (плазма) было плотнее, чем в современную эпоху, и имело температуру 3000-5000 К. Это излучение называют реликтовым излучением. Т. о., обнаружение реликтового излучения свидетельствует о том, что ранее Вселенная не была такой, как сейчас, — она была плотней и горячей. Подсчёты числа внегалактических радиоисточников также подтверждают предположение о том, что ранее либо пространственная плотность радиоисточников в окрестностях нашей Галактики была выше, либо они были в среднем значительно мощнее, чем в современную эпоху. Вместе с этим оказалось, что видимая пространственная плотность радиоисточников на очень больших расстояниях (т. е. на ещё более ранних стадиях эволюции Вселенной) быстро падает. Это можно объяснить тем, что в ту эпоху не было источников радиоизлучения (а возможно, и галактик вообще). Однако падение пространственной плотности может быть результатом и сильного рассеяния радиоизлучения в метагалактическом газе.

История радиоастрономии.

Уже в XIX веке, сразу же после открытия радиоволн, были высказаны предположения о существовании радиоизлучения Солнца и предприняты попытки зарегистрировать его. Однако чувствительность применяемых приёмников радиации оказалась для этого совершенно недостаточной. Лишь в 1931
Карл Янский
(США) на волне 14,6 м случайно обнаружил ощутимое радиоизлучение Млечного Пути. В то время Янский работал радиоинженером на полигоне . Ему было поручено исследование направления прихода грозовых помех. Для этого Карл Янский построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Конструкция составляла 30,5 м в длину и 3,7 м в высоту. Основание антенны крепилось на четырёх колёсах, что обеспечивало вращение по азимуту. Синхронный электропривод за 20 минут поворачивал всю конструкцию на один оборот. Работа велась на волне 14,6 м (20,5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени. В декабре 1932 года Янский уже представляет первые результаты, полученные на своей установке . Сообщалось об обнаружении «…постоянного шипения неизвестного происхождения». Янский утверждал, что эти помехи вызывают «шипение в наушниках, которое трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа». Основываясь на 24-часовом эффекте Янский предположил, что новый источник помех в какой-то мере может быть связан с Солнцем. В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики. Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути.

1937 год. Построен первый радиотелескоп с параболическим зеркалом Гроутом Ребером, радиолюбителем из Уиттона (США, штат Иллинойс). Радиотелескоп располагался в заднем дворе дома родителей Гроута, имел параболическую форму и диаметр антенны около 9 метров. С помощью инструмента Гроут построил карту неба в радиодиапазоне, на которой отчётливо видны центральные области Млечного Пути и яркие радиоисточники Лебедь A (Cyg A) и Кассиопея A (Cas A).

В 1942 было обнаружено радиоизлучение спокойного Солнца, в 1945 — Луны, в 1946 был открыт первый «дискретный» (т. е. малого размера) источник радиоизлучения в созвездии Лебедя. Его физическая природа оставалась неизвестной вплоть до 1954, когда на месте этого радиоисточника наконец удалось увидеть в оптическом диапазоне удалённую Галактику.

В 1951 г. сразу тремя группами радиоастрономов в Нидерландах, США и Австралии была открыта радиолиния водорода 21 см. В том же 1951 г. американские астрономы У. Бааде и Р. Минковский отождествили мощный радиоисточник в созвездии Лебедя с далёкой галактикой (радиогалактика Лебедь А). Вскоре были отождествлены радиоисточники с галактиками NGC 4486 (Дева А), NGC 5128 (Кентавр А) и др., началось всестороннее исследование радиогалактик. В 1953 г. обнаружена двойная структура источника в радиогалактике Лебедь А, оказавшаяся типичной для многих внегалактич. радиоисточников.

В 50-е гг. 20 в. интенсивно изучалось радиоизлучение Солнца и были открыты его осн. особенности. Изучалось радиоизлучение планет. Исследование радиоизлучения Луны на различных длинах волн позволило, в частности, установить, что ее поверхность покрыта значит. слоем пыли; было обнаружено, что поверхность Венеры имеет высокую температуру; изучались физ. условия и на поверхности др. планет, в частности, Марса и Меркурия; была открыта обширная магнитосфера планеты Юпитер.

В конце 50-х — начале 60-х гг. был проведен ряд детальных обзоров неба, что позволило обнаружить значительное число дискретных радиоисточников. Отметим Кембриджские (Великобритания) обзоры неба и соответствующие каталоги радиоисточников, обзоры, проведенные в Австралии (MSH и PKS) и США (обзор Нац. радиоастрономич. обсерватории NRAO, Калифорнийского технологич. института — CT, Огайского университета — O и др.).

В 1965 г. было сделано одно из фундаментальных открытий — обнаружено реликтовое радиоизлучение. Это радиоизлучение свидетельствует, что в прошлом расширяющаяся Вселенная была плотной, имела очень высокую темп-ру вещества, находившегося в равновесии с излучением (см. Модель горячей Вселенной).

В 1967 были обнаружены пульсары — источники пульсирующего радиоизлучения. Первоначально их приняли за сигнал от внеземных цивилизаций, однако последующие исследования показали, что они представляют собой быстровращающиеся нейтронные звезды. Была установлена связь пульсаров с остатками взрывов сверхновых звезд.

Что мы узнали с помощью радиотелескопов.

Если бы «радионебо» можно было видеть так же, как мы видим в ясную ночь звездное небо, нам представилась бы картина, существенно отличающаяся от той, к-рая наблюдается в световых лучах. Мы увидели бы более широкую (в 2-3 раза) яркую полосу вдоль Млечного Пути со значительным увеличением яркости в галактическом центре (в оптическом излучении центр Галактики нельзя видеть из-за сильного поглощения света межзвездной пылью). Все небо было бы усеяно «радиозвездами» и протяженными туманностями различной яркости. При сопоставлении вида неба в световых и радиолучах мы обратили бы внимание на странное, на первый взгляд, несоответствие: на месте многих оптически ярких звезд не было бы видно даже слабых «радиозвезд», в то время как некоторые оптически слабые объекты, невидимые невооруженным глазом, в радиолучах были бы очень яркими. При помощи сильного оптического телескопа на месте некоторых ярких «радиозвезд» мы увидели бы далекие туманности и слабые звездобразные объекты — галактики и квазары. Самым ярким объектом «радионеба» остается Солнце (из-за близости к нам). Однако мощность его радиоизлучения в миллионы раз меньше оптического. Это сравнение показывает, насколько слабо, вообще говоря, радиоизлучение космоса и почему его интенсивное исследование стало возможным лишь после создания гигантских высокочувствительных радиотелескопов.

Второй по потоку радиоизлучения источником — туманность в созвездии Кассиопеи (радиоисточник Кассиопея А) — остаток вспышки сверхновой звезды. Но уже следующий по наблюдаемому потоку излучения объектом является радиоисточник в созвездии Лебедя, отождествляемый с далекой (расстояние ок. 200 Мпк) слабой (16-й звездной величины) туманностью (радиогалактика Лебедь А). Абсолютное большинство наиболее мощных радиоисточников на «радионебе» — внегалактические объекты (радиогалактики и квазары).

Как отмечалось в книге И.С.Шкловского «Вселенная, жизнь, разум», исследование экзопланет в радиодиапазоне могло бы помочь в поиске технически развитых цивилизаций. Известно, например, что планета Земля, если её наблюдать из космоса в радиотелескоп, является самым ярким объектом Солнечной системы в радиодиапазоне (в отдельные периоды даже ярче Солнца) благодаря вещанию многочисленных радиостанций и телепередатчиков. Однако высокий фон радиоизлучения от планеты, находящейся в зоне обитаемости, является хотя и достаточным, но не не необходимым признаком технически развитой цивилизации – возможно, по мере развития техники будут открыты способы связи и технологии СМИ, не связанные с рассеянием радиоизлучения.

Основные современные радиообсерватории.

Крупнейший из современных наземных радиотелескопов — РАТАН-600 (сокращение от РАдиоТелескоп Академии Наук) — радиотелескоп диаметром около 600 метров, располагающийся недалеко от станицы Зеленчукская на Северном Кавказе на высоте 970 метров над уровнем моря. Принадлежит САО РАН. Телескоп состоит из 895 прямоугольных отражающих элементов размером 11,4 на 2 метра, расположенных по кругу с диаметром 576 метров. Круг разделён на 4 сектора по сторонам света. Отражающие элементы каждого сектора выставляются по параболе, образуя отражающую и фокусирующую полосу антенны. В фокусе такой полосы располагается специальный облучатель.

РАТАН-600

Пущинская радиоастрономическая обсерватория

АКЦ ФИАН — старейшее научное учреждение России, занимающееся радиоастрономией. Основана 11 апреля 1956 года на базе постоянно действовавших c 1948 года в Крыму экспедиций. В 1990 году она вошла в состав Астрокосмического центра ФИАН, а в 1996 году была переименована в обсерваторию и получила современное название. Среди оборудования:

· RT-22 — старейший телескоп в обсерватории и один из старейших в России. Создавался с 1951 по 1959 гг.

· ДКР-1000 (DCR-1000) — Диапазонный Крестообразный Радиотелескоп 1000-метровый — радиотелескоп меридианного типа с незаполненной апертурой — состоит из двух антенн Север-Юг и Восток-Запад, расположенных в форме креста. Антенна Север-Юг была разрушена «охотниками за цветным металлом» в конце 90-х годов XX в. и с тех пор не восстановлена.

· БСА (BSA) — Большая сканирующая антенна — радиотелескоп меридианного типа с заполненной апертурой — представляет собой решетку из 16384 волновых диполей размером 187·384 м соответственно в направлении Восток-Запад и Север-Юг. Изначально рабочая частота была 102,5 МГц ± 1,5 МГц, но после того как этот диапазон был отдан для радиовещания пришлось переделать телескоп для работы на частоте 109—113 МГц.

Центр космической связи в Евпатории

Ещё один радиоастрономический центр в России — главный центр испытаний и управления космическими средствами Космического командования — подведомство ВВКО Минобороны РФ, располагается недалеко от г. Евпатория (Крым). Территория центра разделена на 3 площадки. По сути дела является обсерваторией. Создан в 1960 году. Техническую основу Центра составлял космический радиотехнический комплекс «Плутон», оснащённый уникальными антеннами АДУ-1000, которые не имеют мировых аналогов. 27 сентября 1960 года центр принят госкомиссией. 12 февраля 1961 года Центр дальней космической связи приступил к управлению полётом первой в мире автоматической межпланетной станции «Венера-1». В 1965 году были осуществлены запуски аппаратов «Венера-2» и «Венера-3». Со временем был запущен целый ряд космических аппаратов серий «Эхо», «Венера», «Марс», с помощью которых отрабатывались вопросы динамики полётов и посадки на планеты Солнечной системы, изучение атмосферы планет, передачи информации. В мае-июле 1999 года, августе-сентябре 2001 года, июле 2003 года и октябре 2008 года при помощи РТ-70 были отправлены послания внеземным цивилизациям.

Калязинская радиообсерватория

Медвежьи Озёра

Также в России действуют Центр космической связи ОКБ МЭИ «Медвежьи озера

» (ЦКС ОКБ МЭИ) — основан в 1958 году на 26-м километре Щёлковского шоссе, в деревне Долгое Лёдово, в 15 км восточнее Москвы; и
Калязинскаярадиоастрономическая обсерватория
(КРАО) Астрокосмического центра ФИАН — радиоастрономическая обсерватория, введена в строй в 1992 году, располагается вблизи города Калязин Тверской области. Основным нструментом их обоих является радиотелескоп ТНА-1500, известный также как РТ-64 (цифры в названии означают: 64 – диаметр антенны 64 метра, 1500 – величина собирающей площади 1500 квадратных метров. Минимальная рабочая длина волны — 1 см. Первый радиотелескоп этого типа вступил в строй в 1979 году.

Из зарубежных радиообсерваторий наиболее известны американские обсерватории Аресибо и Гринбэнк.

Аресибо

— астрономическая обсерватория, расположенная в Пуэрто-Рико, в 15 км от города Аресибо, на высоте 497 м над уровнем моря. Интересен тем, что его антенна расположена в кратере потухшего вулкана. Официальное открытие обсерватории Аресибо состоялось 1 ноября 1963 года. Среди открытий, сделанных в обсерватории, следует отметить:

· 7 апреля 1964 года Гордон Петтенгилл и Р. Дайс уточнили сидерический период вращения Меркурия с 88 дней до 59.

· В 1968 году, измерение периодичности пульсара в Крабовидной туманности (33 мс), и аналогичные измерения для подобных объектов, которые позволили подтвердить существование нейтронных звёзд.

· В 1974 году Рассел Халс и Джозеф Тейлор обнаружили первый двойной пульсар PSR B1913+16, (за это они были удостоены Нобелевской премии по физике в 1993 году).

· В 1982 году обнаружен первый «миллисекундный» пульсар PSR J1937+21, (Don Backer, Shri Kulkarni и другие). Частота вращения этого объекта — 642 раза в секунду (он до 2005 года был самым быстровращающимся из обнаруженных пульсаров).

· В 1990 году Александр Вольшчан обнаружил пульсар PSR 1257+12, у которого, при дальнейшем его изучении, были открыты первые планеты за пределами Солнечной системы.

· В 1994 году в приполярных областях Меркурия обнаружены поверхности, сходные по радиоотражающим свойствам с водяным льдом.

Обсерватория в Аресибо

Общественности обсерватория в Аресибо известна по нескольким голливудским фильмам. Гигантская антенна радиотелескопа обсерватории фигурировала, например, в фильме «Золотой глаз» из эпопеи про Джеймса Бонда и фильме «Контакт», снятому по одноимённому роману Карла Сагана.

С 1999 года информация с этого радиотелескопа поступает для обработки проектом [email protected], посредством подключённых к Интернету компьютеров добровольцев.

Обсерватория Грин-Бэнк

Радиотелескоп Грин-Бэнк

(англ. Green Bank Telescope) — параболический радиотелескоп Национальной радиоастрономической обсерватории, расположенный в Грин-Бэнк, штат Западная Вирджиния, США. Вступил в строй в августе 2000 года. Грин-Бэнк — крупнейший в мире полноповоротный параболический радиотелескоп по состоянию на сентябрь 2009 года. Зеркало имеет размеры по осям 100-110 м. Этот радиотелескоп может быть направлен в любую точку на небе с точностью, превосходящей одну тысячную градуса. Минимальная рабочая длина волны 6 мм.

Вопросы и задания:

1. Что изучает радиоастрономия?

2. Как устроен радиотелескоп?

3. Как определяется разрешающая способность радиотелескопов?

4. Что такое радиоинтерферометрия?

5. В чём преимущества и недостатки радиотелескопов по сравнению с обычными оптическими телескопами?

6. Кто был основателем радиоастрономии?

7. В чём особенность длины волны 21 см?

8. Какие основные открытия были сделаны с помощью радиотелескопов? Что такое пульсары, квазары, радиогалактики?

9. Как с помощью радиоастрономии можно обнаружить технически развитые внеземные цивилизации? Почему их пока не удалость обнаружить таким способом?

10. Назовите основные радиоастрономические обсерватории России и США. Каковы отличительные черты каждой из них?

11. Сравните между собой свойства крупнейшего российского радиотелескопа РАТАН-600 и крупнейшего американского радиотелескопа Грин-Бэнк

Лунная обсерватория

Другой вариант — создание полноценной обсерватории на Луне. Это решит проблему дальнейшего роста телескопов. В отличие от космических телескопов лунная обсерватория может быть обслуживаемой, следовательно, долговечной; на Луне нет помех от деятельности человека; нет атмосферы. Создание связной системы телескопов на Земле и Луне позволит значительно расширить современные возможности астрономии.

Задачи, которые стоят перед радиоастрономией – создание системы космических телескопов или создание лунной обсерватории – это те задачи, которые человечество может решить уже сейчас, но для этого необходимо большое количество специалистов, ресурсов. Космическая гонка второй половины двадцатого века подарила человечеству огромное количество технологий. Благодаря стремлению оказаться первыми в космосе был сделан значительный технологический рывок – появились спутниковая связь, интернет, системы навигации и многие другие технологии. Именно дальнейшее покорение космоса может дать человечеству решение многих проблем XXI века.

Историческая справка.

Радиоастрономия как наука началась в 1931, когда К.Янский из стал изучать помехи радиосвязи и обнаружил, что они приходят из центральной части Млечного Пути. Первый радиотелескоп построил в 1937–1938 радиоинженер Г.Ребер, самостоятельно сделавший у себя в саду из листов железа 9-метровый рефлектор, в принципе такой же, как нынешние гигантские параболические антенны. Ребер составил первую радиокарту неба и обнаружил, что на волне 1,5 м излучает весь Млечный Путь, но наиболее сильно – его центральная часть. В феврале 1942 Дж.Хей заметил, что в метровом диапазоне Солнце создает помехи радиолокаторам, когда на нем происходят вспышки; радиоизлучение Солнца в сантиметровом диапазоне в 1942–1943 открыл Дж.Саутворт.

Планомерное развитие радиоастрономии началось после Второй мировой войны. В Великобритании были созданы крупная обсерватория Джодрелл-Бэнк (Манчестерский университет) и станция Кавендишской лаборатории (Кембридж). Радиофизическая лаборатория (Сидней) организовала несколько станций в Австралии. Нидерландские радиоастрономы стали изучать облака межзвездного водорода. В СССР были построены радиотелескопы под Серпуховом, в Пулкове, в Крыму.

Крупнейшими радиообсерваториями США являются Национальные радиоастрономические обсерватории в Грин-Бэнк (шт. Зап.Виргиния) и Шарлотсвилле (шт. Виргиния), обсерватория Корнеллского университета в Аресибо (о. Пуэрто-Рико), обсерватория Калифорнийского технологического института в Оуэнс-Вэлли (шт. Калифорния), Линкольновская лаборатория Массачусетского технологического института и обсерватория Ок-Ридж Гарвардского университета (шт. Массачусетс), обсерватория Хэт-Крик Калифорнийского университета в Беркли (шт. Калифорния), Радиоастрономическая обсерватория пяти колледжей Массачусетского университета (шт. Массачусетс).

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: