Какова орбита нашей планеты? – все о космосе

Мы живём в гелиоцентрической системе. Это означает, что наша планета вращается непосредственно вокруг Солнца. Но так считалось не всегда. До 16 века весь мир был уверен, что Солнце обращается вокруг Земли. Визуально именно такое впечатление и складывается у наблюдателя, находящегося на поверхности планеты.

Такая система получила название геоцентрической, от древнегреческого слова «Гео» — так называли нашу планету в древности. Благодаря лишь пытливым умам учёных прошлого, стало понятно, что это понимание ошибочно. Несмотря на запреты Римской церкви, это мнение стало общепризнанным.

Битва в прошлом за гелиоцентрическую систему

Первым учёным, пытавшимся порушить установившуюся в умах людей мысль о том, что Земля неподвижна, был Аристарх. Он жил в третьем веке нашей эры. Но чётких аргументов в пользу гелиоцентрической системы на то время не было. Поднимался этот вопрос достаточно робко и в пятом веке нашей эры учёным древности Ариабхата.

орбита земли

Законы движения планет Кеплера

Довольно долгое время исследователи считали, что планеты двигаются по определённым круговым орбитам. В созданной греческим ученым Птолемеем во втором веке нашей эры системе мироздания как раз и отражала представления о сложных круговых движениях планет по определенным траекториям.

Готовые работы на аналогичную тему

  • Курсовая работа Орбиты планет 430 руб.
  • Реферат Орбиты планет 280 руб.
  • Контрольная работа Орбиты планет 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Но к началу семнадцатого века схема, где в центре была Земля, а не Солнце перестала удовлетворять ученых Европы.

В результате сначала Николай Коперник доказал, что Земля вращается вокруг Солнца, а не наоборот. А потом и немецкий математик, и астроном Иоганн Кеплер в 1609 году пришёл к выводу, что орбита планет не представляет собою круг.

Первый закон Кеплера.

Все планеты перемещаются в космическом пространстве по определённым орбитам в форме эллипса. При этом в одном из фокусов находится Солнце.

Второй закон Кеплера.

Согласно этому закону радиус-вектор планеты описывает в равные промежутки времени равные площади. В 1619 году Кеплер разработал и третий закон

Третий Закон Кеплера.

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Рассмотрим особенности орбит планет в нашей родной Солнечной системе.

Итак, орбитами планет в системе нашего Солнца называют те пути в пространстве, по которым планеты обращаются вокруг звезды. При этом формы движения планет близки к круговым, а плоскости, в свою очередь, близки к плоскости эклиптики. Исключением являются космические тела, обладающие малой массой.

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Земля все-таки вертится!

И только лишь в шестнадцатом веке учёный польского происхождения Николай Коперник смог доказать достоверность того, что Земля обращается вокруг Солнца. Несмотря на это, лишь в конце этого же столетия его трудами и книгами заинтересовался Джордано Бруно. Впоследствии за свои высказывания он был сожжён на костре Римской инквизицией. И только лишь Галилео Галилею удалось окончательно доказать и сломить неверный стереотип понимания устройства мира. Таким был трудный и долгий путь обретения истины о вращении нашей планеты.

Особенности орбиты Земли

Орбита Земли вокруг Солнца не является правильным кругом. Она имеет конфигурацию эллипса, но не ярко выраженного. Максимально планета удаляется на дистанцию 152 миллиона километров, это явление получило название перигелий.

орбита земли вокруг солнца

Полный период обращения планеты вокруг Солнца составляет 365,25 земных суток, это астрономический год. Годовое перемещение Земли по орбите фиксируют исходя из косвенных проявлений. К ним относят изменение длительности дня и ночи, изменение полуденной высоты, а также смену точек восхода и захода Солнца.

Скорость движения

Земля совершает вращение по направлению с запада на восток.

Звездные сутки — вращение планеты вокруг своей оси и относительно далеких звезд. Солнечные — относительно центра Солнца. Разница периода вращения между ними составляет 3 минуты 56 секунд. Солнечный — ровно 24 часа, звездный — несколько меньше (23 часа 56 минут 4,09971 секунды ).

Угловая скорость рассчитывается по формуле: 2 Пи ÷ звездные сутки = 7,292115078·10–5 c–1.

Линейная скорость вращения Земли (на экваторе) составляет 465,1013 м/с (1674,365 км/ч). Скорость оборота Земли вокруг своей оси зависит от широты: на экваторе она будет максимальной, на полюсах, соответственно, минимальной. Так, на широте 60° скорость в два раза меньше, чем на экваторе.

Скорость движения Земли вокруг Солнца равняется 108 000 км/ч (30 км/сек). Орбитальный путь составляет около 940 000 000 километров. Полный оборот осуществляется за 365.242199 дней.

Скорость вращения Земли

Времена года

Орбита Земли проходит то ближе, то дальше от Солнца. Точка наиболее близкого схождения называется перигелием, а наиболее далекого — афелием. Но времена года и температура зависят не от этого, разница между перигелием и афелием составляет всего 1,5—2 % от средней величины (средняя величина в данном случае — это расстояние до Солнца, она носит название астрономической единицы и равна примерно 149 600 000 км ). То есть нашу орбиту можно назвать настолько приближенной к кругу, что эти небольшие отклонения не оказывают существенного влияния на изменение сезонных температур.

Время обращения Земли вокруг Солнца составляет 365.242199 средних солнечных дней, этот период почти равен нашему календарному году.

Астрономический год несколько больше календарного, поэтому каждые четыре года набегают еще одни сутки, а в феврале добавляется еще один день. Такой год называется високосным.

Траектория планеты формируется таким образом, что в один период времени ось Земли ближе к Солнцу своим южным полюсом, а в другой — северным. Соответственно, если в первом случае большую долю тепла получает южное полушарие, то во втором — северное. Именно это влияет на времена года. Связано это с тем, что угол оси планеты к плоскости эклиптики не меняет своего наклона и всегда составляет 23,4°. Таким образом, если представить себе вид спереди, то в крайней левой точке к Солнцу будет северный полюс, а в крайней правой — южный.

Интересно, что сезонность на экваторе выражена совсем не так, как в средних широтах, ведь его удаленность от светила зависима от оси вращения в наименьшей степени. В то же время меняется угол расположения Солнца по отношению к земному экватору. Этот угол имеет четыре пиковых точки, которые и разделяют времена года. В наиболее крайних положениях их называют точками солнцестояния и равноденствия. Первая считается датой начала зимы/лета, вторая — весны/осени.

как вращается земля

Равноденствие

Момент прохождения Солнцем небесного экватора является датой равноденствия. То есть в этот момент времени Солнце расположено по отношению к земному экватору практически перпендикулярно, то есть и северное, и южное полушарие получают равную долю света и тепла.

Смысл этого термина отображен в его названии — это дата, когда день и ночь почти равны друг другу по времени. Такое соотношение Земли и Солнца случается дважды в год, соответственно, различают весеннее и осеннее равноденствие.

Даты немного «плавают» и могут отличаться в разных часовых поясах, они приходятся примерно на 20 марта и на 22-23 сентября. Эти числа считаются началом астрономической весны и осени, при этом эти сезоны противоположны в разных полушариях. Если в северном в марте наступает весна, то в южном — осень, и наоборот.

Весеннее равноденствие 2017

Солнцестояние

Явления, когда Солнце по отношению к экватору находится в самом крайнем положении (то есть в моменты, когда угол отклонения от перпендикуляра к экватору Земли наиболее высок), называются солнцестоянием. Такие события так же, как и равноденствие, случаются дважды в год. Называются они зимним и летним солнцестоянием и приходятся на 21—22 декабря и 20—21 июня.

Для северного полушария 21 декабря — дата, когда продолжительность дня минимальна, а ночи — максимальна. Затем длительность дня начинает возрастать (а ночи — уменьшаться) до тех пор, пока 21 июня не начинается обратный процесс. Под днем понимается период между восходом и заходом Солнца. И здесь также применим принцип противоположности: что в северном полушарии самый короткий, то в южном — самый длинный день.

На бытовом уровне в средних широтах можно наблюдать изменения расположение Солнца над горизонтом в полдень. В день зимнего солнцестояния наше светило будет находиться в самой нижней точке над горизонтом, а затем с каждым днем располагаться все выше и выше. В день летнего солнцестояния оно будет расположено в наивысшей точке и затем пойдет на убыль, следствием чего будет также и сокращение дня.

Что такое равноденствие. Инфографика (19.03.2014) | Инфографика ...

Мы летим сквозь пространство и время

Орбита Земли вокруг Солнца имеет дистанцию более 930 миллионов километров. Это поистине огромное расстояние. Его наша планета преодолевает всего за один год. Это обосновано тем, что скорость Земли по орбите вокруг Солнца достаточно высока и оставляет 107 218 километров в час. Для сравнения, между крайними точками России (восток – запад) около десяти тысяч километров. Фактически, Земля за один час преодолевает расстояние почти в одиннадцать раз большее, чем общая протяжённость России в направлении с востока на запад.

Особенности календаря

Поскольку полный период оборота Земли вокруг Солнца не является кратным числом, для удобства календарный год округляется до 365 суток. Однако реальный период несколько больше, поэтому примерно за четыре года «набегает» еще один день. Год, когда этот день добавляется, называется високосным, а остальные года являются, соответственно, невисокосными.

Однако и это не приводит к полному соответствию, поскольку астрономический год между днями равноденствия составляет (опять же, примерно) около 365 суток 5 часов 49 минут. Еще 11 минут и все было бы идеально, но этот относительно незначительный отрезок на относительно больших временных дистанциях также накапливается.

За 128 лет необходимо добавлять еще один день.

Эта особенность была подмечена благодаря церковным праздникам, которые должны были приходиться на день равноденствия, а на деле к 16 веку запаздывали почти на 10 дней (равноденствие случалось раньше).

Эта погрешность была устранена спустя почти 16 столетий спустя после того, как был введен високосный год (введен в 45 г. до н. э., исправлено в 1582 г. н. э.). К концу 16-го века была проведена реформа календаря: теперь для соответствия високосному было недостаточно, чтобы год делился на 4. Года, которые кратны 100, перестали считаться високосными. Исключение составляют те, которые, помимо 100, кратны еще и 400.

Какой год называют високосным 5 класс. Високосные года: список ...

Немного о плоскости эклиптики Земли и других планет

Плоскость эклиптики – это плоскость орбиты Земли. Подобное словосочетание вы будете встречать довольно часто, для большинства это не совсем понятная фраза. На самом деле, чтобы понять, необходимо вспомнить, что Земля, как и другие объекты Солнечной системы, обладает углом наклона. К примеру, у Плутона (ранее он считался планетой) самый большой угол — 120 градусов.

У Земли он составляет около 23.5 градуса.

плоскость орбиты земли

Классификация[ | ]

По геометрической форме орбиты делятся на круговые и эллиптические, с тем или иным эксцентриситетом. Также существует разделение на замкнутые и незамкнутые орбиты, в особенности для КЛА.

По углу наклонения i

плоскости орбиты к плоскости земного экватора — на экваториальные (
i
=0°), полярные (
i
=90°) и наклонные (
i
— любое, кроме 0° и 90°).

По соотношению периода обращения Т

об вокруг земного шара с земными или солнечными сутками — на не синхронные, квазисинхронные, синхронно-суточные (геосинхронные), солнечно-синхронные.

Форма орбиты: как это может влиять на климат

Вернёмся непосредственно к самой орбите Земли и её особенностям. Фактически, круговая орбита Земли (наличие эллипсоидальной формы незначительно) обеспечивает отсутствие сильного отдаления или приближения к нашему Солнцу. Благодаря этому получение тепла от него практически одинаково.

круговая орбита земли

Точно так же, по геометрической прогрессии, увеличивается тепло при приближении. Поэтому достаточно наличия эллипса орбиты Земли с соотношением 1 к 2, чтобы условия на планете стали малопригодны для жизни на планете в том виде, который мы имеем сейчас.

К примеру, дистанция от Солнца до Марса в 1.52 раза больше, чем до Земли. Этого расстояния хватает, чтобы в летнее время температура этой планеты была максимум +20°С и минимум -90°С, а в зимние ночи опускалась до -125 °С. Орбита Земли имеет эллипсоидную форму с соотношением 1 к 1,034, поэтому температурные изменения на планете не такие резкие.

Откуда берутся кометы и почему их орбиты не такие, как у планет

Чтобы быть на устойчивой орбите на определенном расстоянии от Солнца, согласно законам тяготения, каждый объект должен двигаться с определенной скоростью. В терминах физики это означает, что должен быть баланс между потенциальной энергией системы (в виде гравитационной потенциальной энергии) и энергией движения тела (кинетическая энергия). Чем ближе планета к Солнцу — тем больше сила гравитации и поэтому необходимо двигаться быстрее, чтобы иметь стабильную орбиту.

Вот почему, если посмотреть на средние скорости планет на их орбитах, то они такие:

  • Меркурий: 48 км/с,
  • Венера: 35 км/с,
  • Земля: 30 км/с,
  • Марс: 24 км/с,
  • Юпитер: 13 км/с,
  • Сатурн: 9.7 км/с,
  • Уран: 6.8 км/с,
  • Нептун: 5.4 км/с.

Из-за большой массы Солнца в сравнении с массами вращающихся вокруг него планет их орбиты близки к круговой, поскольку сами планеты находятся относительно далеко друг от друга и мало гравитационно взаимодействуют между собой.

Но есть и другие гравитационные взаимодействия, которые происходят в солнечной системе. Если астероид или объект из пояса Койпера проходят близко к большой массе, например Юпитеру или Нептуну, гравитационное взаимодействие с ними придает импульс движения. Они могут изменить свою скорость на значительную величину, вплоть до нескольких километров в секунду, практически в любом направлении. Подробнее об этом читайте в статье «Как при помощи гравитации «Вояджеры» покинули Солнечную систему».

Для астероида или кометы это может привести к тому, что его орбита переходит от примерно круговой к вытянутой эллиптической. Хорошим примером этого является орбита кометы Энке, которая, возможно, имеет свое происхождение из пояса астероидов.
Орбита кометы Энке.
С другой стороны, если объект (астероид или комета) находится очень далеко от Солнца, например, в поясе Койпера или облаке Оорта, он может двигаться со скоростью от 4 км/с (для внутреннего пояса Койпера) до нескольких сотен метров в секунду (для облака Оорта). Гравитационное взаимодействие с крупной планетой, подобной Нептуну, может изменить его орбиту в одном из двух направлений. Если Нептун забирает кинетическую энергию, то он направит тело во внутреннюю Солнечную систему, создав длиннопериодический эллипс, похожий на орбиту кометы Свифта–Таттла, которая вызывает метеорный дождь Персеиды. Это будет эллипс, который едва ли гравитационно связан с Солнцем, но тем не менее это эллипс.

Орбита кометы Свифта–Таттла.

Но если Нептун или любое другое массивное небесное тело (мы все еще не знаем, что там есть во внешней Солнечной системе) дает дополнительную кинетическую энергию, то это может изменить орбиту кометы со связанной эллиптической на несвязанную гиперболическую (параболическая, между прочим, является несвязанной орбитой, которая находится между эллиптической и гиперболической). Например, комета ISON, которая в 2013 году распалась, приблизившись к Солнцу, была на гиперболической орбите.

Комета IOSON

Как правило, все кометы, происходящие из внешней Солнечной системы, имеют скорости, отличающиеся между связанными и несвязанными орбитами, в пределах нескольких км/с.

Поэтому им не нужно много энергии, чтобы войти во внутреннюю Солнечную систему. При очень малых скоростях они бы просто падали на Солнце под воздействием его гравитации. В принципе, все они рано или поздно так и сделают, как комета ISON.

Для очень отдаленных масс в нашей солнечной системе даже самое небольшое изменение их скорости может подтолкнуть к изменению орбиты с почти круговой до вытянутой к Солнцу параболической. Хотя эти гравитационные подталкивания от соседних объектов происходят в более или менее случайных направлениях, мы видим только те кометы, которые приближаются к Солнцу, при этом испуская хвосты и становясь достаточно яркими, чтобы их можно было заметить. Вот откуда берутся кометы.

Все ли мы знаем о жизни в космосе?

В бескрайних просторах космоса существует бесчисленное количество планет. Среди них обнаружены небесные тела, орбиты которых достаточно вытянуты.

скорость земли по орбите

Формирование Солнечной системы

Собранные за много лет знания дают возможность ученым лишь строить предположения о том, как сформировалась Солнечная система. Существует общепризнанная небулярная теория, согласно которой Солнце и планеты возникли из молекулярного облака. Плотное облако при этом подверглось резкому сжатию под действием гравитации.

Предполагаемый возраст Солнечной системы – 4,6 миллиардов лет. В первую очередь, в центральной части газопылевого облака образовалось Солнце. Вокруг него, из вещества, оказавшегося за пределами центра, сформировался протопланетный диск. Позже из него возникли планеты, спутники и прочие космические тела.

Само же облако, по предположению ученых, могло образоваться после взрыва сверхновой звезды. Ее масса, должно быть, соответствовала массе 30 Солнц. Сверхновая звезда заполучила название Коатликуэ. Впоследствии Солнечная система эволюционировала.

Небулярная гипотеза появилась в 18 веке. Ее выдвинули ученые Сведенборг и Лаплас вместе с философом Кантом. По сегодняшний день данная теория проверяется и улучшается на основании новых данных.

В начале 21 века ученые резко изменили мнение о том, как выглядела Солнечная система в начале своего существования. Прежде считалось, что за миллиарды лет ничего не изменилось. Однако, согласно новым представлениям, сейчас она стала более громоздкой.

Интересно: Почему над горизонтом Луна кажется большой, а над головой — маленькой?

Из чего состоит Солнечная система?

В современном представлении Солнечная система включает центральную звезду, а также естественные космические тела, которые вращаются вокруг нее. Масса системы – 1,0014 M☉(специальная единица измерения, использующаяся в астрономии).

Большую часть данной массы составляет Солнце, все остальное – планеты системы. В нее входит восемь планет. При этом Солнечная система состоит из внутренней и внешней области. Внутренняя область представлена близлежащими планетами: Меркурием, Венерой, Землей и Марсом. Внешнюю область образуют Юпитер, Сатурн, Уран и Нептун.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: