Затменно-двойная звезда [переменная]


Введение

Двойными звездами в астрономии называют такие пары звезд, которые заметным образом выделяются на небе среди окружающих звезд фона близостью своих видимых положений. В качестве оценок близости видимых положений принимают следующие границы угловых расстояний r

между компонентами пары, зависящие от видимой звездной величины
m
:
m

r
mr
mr
mr
(1)

Здесь слева даны границы звездных величин компонентов, справа – соответствующие предельные угловые расстояния между компонентами в единицах секунды дуги, до которых данная пара считается двойной звездой.

Среди двойных звезд различают физические и оптические пары. Физические пары представляют собой системы близко расположенных в пространстве звезд, связанных силами тяготения и обращающихся около общего центра тяжести по законам Кеплера. Оптические пары, наоборот, состоят из весьма далеко расположенных друг от друга в пространстве звезд, случайным образом проектирующихся на небесную сферу вблизи одного направления. Для астрономии такие пары не представляют интереса.

Физические двойные звезды имеют для астрономии как науки в целом фундаментальное значение. Астрономы многих стран изучают эти звезды уже более двух веков, и интерес к ним не ослабевает. Именно изучение двойных звезд позволило однозначно установить единство закона всемирного тяготения Ньютона во Вселенной и получить, опираясь на наблюдения, фундаментальные знания о массах звезд, их светимости и эволюции.

Двойные звёзды

Звёзды могут быть одиночными и могут образовывать звёздные пары. На периферии галактик больше одиночных звёзд, вблизи ядра — больше звёзд двойных, тройных и кратных. Первооткрывателем двойных звёзд стал У.Гершель, хотя еще И.Кеплер предполагал их существование. Гершель обнаружил тысячи звёздных пар и доказал, что это действительно близкие звёзды, связанные силами тяготения. Такие звёзды называются физическими двойными. Если компоненты двойной звезды достаточно удалены друг от друга, так что видны раздельно (могут быть разрешены), то такие двойные звёзды называются визуально двойными. Двойственность некоторых тесных пар, компоненты которых не видны в отдельности, может быть обнаружена либо фотометрически (затменно-двойные звёзды), либо спектроскопически (спектрально-двойные).

В отличии от вышеперечисленных физически двойных существует большая группа звёзд, которые на самом деле далеки друг от друга и физически не связаны между собой. Они только проектируются в очень близкие точки на небесной сфере и потому называются оптическими двойными звёздами.

Двойные звёзды весьма часто встречаются в природе, поэтому их изучение существенно не только для выяснения природы самих звёзд, но и для космогонических проблем происхождения и эволюции звёзд.

Тесные двойные или физически-двойные системы представляют собою такие пары звёзд, расстояние между которыми сопоставимо с их размерами, При этом существенную роль начинают играть приливные взаимодействия между компонентами. Под действием приливных сил поверхности обеих звёзд перестают быть сферическими, звёзды приобретают эллипсоидальную форму и у них возникают направленные друг к другу приливные горбы, подобно лунным приливам в океане Земли.

Форма, которую принимает тело, состоящее из газа, определяется поверхностью, проходящей через точки с одинаковыми значениями гравитационного потенциала. Эти поверхности называются эквипотенциальными. Газ может свободно течь вдоль эквипотенциальной поверхности, что и определяет равновесную форму тела. Для одиночной невращающейся звезды эквипотенциальные поверхности, очевидно, — концентрические сферы с центром, совпадающим с центром масс. Это объясняет сферичность обычных звёзд. Для тесной двойной системы эквипотенциальные поверхности имеют сложную форму и образуют несколько семейств кривых. Характер их легко представить, если внимательно посмотреть на сечение критических поверхностей, разделяющих эти семейства. Самая внутренняя из них восьмеркой охватывает обе звезды и проходит через первую (внутреннюю) точку Лагранжа L1. Эта поверхность ограничивает область, называемую внутренней полостью Роша, состоящую из двух замкнутых объемов, в каждом из которых располагаются эллипсоиды эквипотенциальных поверхностей, определяющих форму деформированных приливным взаимодействием звёзд. Две другие критические поверхности проходят соответственно через вторую и третью (внешние) точки Лагранжа, причем последняя поверхность ограничивает еще две полости, содержащие точки Лагранжа L4 и L5. Если внешние слон звёзд выходят за пределы внутренней полости Роша, то, растекаясь вдоль эквипотенциальных поверхностей, газ может, во- первых, перетекать от одной звезды к другой, а, во- вторых, образовать оболочку, охватывающую обе звезды. Классическим примером такой системы является звезда b Лиры, спектральные наблюдения которой позволяют обнаружить как общую оболочку тесной двойной, так и газовый поток от спутника к главной звезде.

Чтобы убедиться в том, что данная пара звёзд физически связана и не является оптически двойной, необходимо произвести длительные наблюдения, позволяющие заметить орбитальное движение одной из звёзд относительно другой. С большой степенью вероятности физическая двойственность звёзд может быть обнаружена по их собственным движениям: звёзды, образующие физическую пару (компоненты двойной звезды), имеют почти одинаковое собственное движение. Иногда видна только одна из звёзд, совершающих взаимное орбитальное движение. В этом случае ее путь на небе выглядит волнистой линией.

Движение компонентов двойных звёзд происходит в соответствии с законами Кеплера: оба компонента описывают в пространстве подобные (т.е. с одинаковым эксцентриситетом) эллиптические орбиты вокруг общего центра масс.

Таким же эксцентриситетом обладает орбита звезды-спутника относительно главной звезды, если последнюю считать неподвижной. Большая полуось орбиты относительного движения спутника вокруг главной звезды равна сумме больших полуосей орбит движения обеих звёзд относительно центра масс. С другой стороны, величины больших полуосей этих двух эллипсов обратно пропорциональны массам звёзд. Таким образом, если из наблюдений известна орбита относительного движения, можно определить сумму масс компонентов двойной звезды. Если же известны отношения полуосей орбит движения звёзд относительно центра масс, то можно найти еще отношение масс и, следовательно, массу каждой звезды в отдельности. В этом также заключается огромная роль изучения двойных звёзд в астрономии: оно позволяет определить важную характеристику звезды — массу, знание которой необходимо для исследования внутреннего строения звезды и ее атмосферы.

А теперь приступим к рассмотрению различных физически двойных звёзд.

Как уже было сказано в начале этой главе единственными физически двойными звёздами, которые хорошо видны раздельно, являются визуально-двойные. Видимую орбиту звезды-спутника относительно главной звезды находят по длительным рядам наблюдений, выполненным в различные эпохи. С довольно высокой точностью наблюдений эти орбиты всегда оказываются эллипсами. В некоторых случаях на основании сложного собственного движения одиночной звезды, относительно других звёзд фона, можно судить о наличии у неё спутника, который невидим либо из- за близости к главной звезде, либо из- за своей значительно меньшей светимости (темный спутник). Именно таким путем были открыты первые белые карлики — спутники Сириуса и Прёоциона, впоследствии обнаруженные визуально.

Видимая орбита визуально- двойной звезды является проекцией истинной орбиты на картинную плоскость. Поэтому для определения всех элементов орбиты прежде всего необходимо знать угол наклонения i. Этот угол можно найти, если видны обе звезды. Его определение основано на том, что в проекции на плоскость, перпендикулярную лучу зрения, главная звезда оказывается не в фокусе эллипса видимой орбиты, а в какой-то другой его внутренней точке. Положение этой точки однозначно определено углом наклонения i и долготой периастра w. Таким образом, определение элементов i и w, а также эксцентриситета е является чисто геометрической задачей. Элементы Р, Т и р получаются непосредственно из наблюдений. Наконец, истинное значение большой полуоси орбиты а’ и видимое а связаны очевидным соотношением а’ = a cos i.

Из наблюдений а’ и, следовательно, а получаются в угловой мере. Только зная параллакс звезды, можно найти значение большой полуоси в астрономических единицах (а.е.).

В настоящее время зарегистрировано свыше 60 000 визуально- двойных систем. Примерно у 2000 из них удалось обнаружить орбитальные движения с периодами от наименьшего 2,62 года у e Ceti до многих десятков тысяч лет. Однако надежные орбиты вычислены примерно для 500 объектов с периодами, не превышающими 500 лет.

Затменно- двойными называются такие неразрешимые в телескопы тесные пары звёзд, видимая звёздная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей — спутником. Типичными примерами звёзд этого типа являются звёзды Алголь b Персея и b Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звёздная величина затменно- двойных звёзд меняется периодически.

График, изображающий изменение потока излучения звезды со временем, называется кривой блеска. Момент времени, в который звезда имеет наименьшую видимую звёздную величину, называется эпохой максимума, а наибольшую — эпохой минимума. Разность звёздных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами — периодом переменности. У Алголя, например, период переменности равен 2d 20h 49m, а у b Лиры — 12d 21h 48m.

По характеру кривой блеска затменно- двойной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме.

На основании детального изучения кривых блеска можно получить следующие данные о компонентах затменных переменных звёзд:

1. Характер затмений (частное, полное или центральное) определяется наклонением i и размерами звёзд. Когда i = 90°, затмение центральное, как у b Лиры. В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX Геркулеса или b Персея).

2. На основании продолжительности минимумов находят радиусы компонентов R1 и R2, выраженные в долях большой полуоси орбиты, так как продолжительность затмения пропорциональна диаметрам звёзд.

3. Если затмение полное, то по отношению глубин минимумов можно найти отношение светимостей, а при известных радиусах, — также и отношение эффективных температур компонентов.

4. Отношение промежутков времени от середины главного минимума до середины вторичного минимума и от вторичного минимума до следующего главного минимума зависит от эксцентриситета орбиты е и долготы периастра w. Точнее, фаза наступления вторичного минимума зависит от произведения е•cos w. Если вторичный минимум лежит посередине между двумя главными минимумами (как у RX Геркулеса), то орбита симметрична относительно луча зрения и, в частности, может быть круговой. Асимметрия положения вторичного минимума позволяет найти произведение е•cos w.

5. Наклон кривой блеска, иногда наблюдаемый между минимумами, позволяет количественно оценить эффект отражения одной звездой излучения другой, как, например, у b Персея.

6. Плавное изменение кривой блеска, как, например, у b Лиры, говорит об эллипсоидальности звезд, вызванной приливным воздействием очень близких компонентов двойных звезд. К таким системам относятся звезды типа b Лиры и W Большой Медведицы. В этом случае по форме кривой блеска можно установить форму звёзд.

7. Детальный ход кривой блеска в минимумах иногда позволяет судить о законе потемнения диска звезды к краю. Выявить этот эффект, как правило, очень трудно. Однако, в отличие от Солнца, это единственный имеющийся в настоящее время метод изучения распределения яркости по дискам звёзд.

В итоге на основании вида кривой блеска затменно-двойной звезды в принципе можно определить следующие элементы и характеристики системы: i — наклонение орбиты; Р — период; Т — эпоха главного минимума; е — эксцентриситет орбиты; w — долгота периастра; R1 и R2 — радиусы компонентов, выраженные в долях большой полуоси; для звёзд типа b Лиры — эксцентриситеты эллипсоидов, представляющих форму звёзд; L1/L2 — отношение светимостей компонентов или их температур T1/T2 .

Для некоторых особых типов звёзд (например, Вольфа- Райе), если они затменные, удаётся найти ряд дополнительных характеристик.

Задача определения всех этих величин весьма сложна и далеко не всегда может быть решена до конца. Обычно по общему виду кривой блеска сначала грубо определяют тип и поименную ориентацию орбиты, после чего точно вычисляются элементы орбиты. В настоящее время известно свыше 4000 затменно-двойных звёзд различных типов. Минимальный известный период — менее часа, наибольший — 57 лет. Информация о затменных звёздах становится более полной и надёжной при дополнении фотометрических наблюдений спектральными.

В 1967-69 гг. М. А. Свечниковым была разработана классификация тесных затменно- двойных звёздных систем, сочетающая достоинства классификации Копала (1955), учитывающей геометрические свойства этих систем (размеры компонентов по отношению к размерам соответствующих внутренних критических поверхностей (ВКП) Роша) и классификации Крата (1944, 1962 гг.), основанной на физических характеристиках компонентов, входящих в данную систему. Как было показано в работе М. А. Свечникова (1969), подавляющее большинство изученных затменных переменных звёзд (т.е. тех систем, для которых определены фотометрические и спектроскопические элементы) принадлежит к одному из следующих основных типов:

1. Разделенные системы главной последовательности (РГП), где оба компонента системы являются звёздами главной последовательности, не заполняющими соответствующие ВКП, обычно не приближающиеся к ним ближе по размерам чем ¾.

2. Полуразделенные системы (ПР), где более массивный компонент является звездой главной последовательности, обычно далекой от своего предела Роша, а менее массивный спутник является субгигантом, обладающим избытком светимости и радиуса и близким по размерам к соответствующей ВКП.

3. Разделенные системы с субгигантом (РС), у которых, в отличии от ПР-систем, спутник-субгигант, несмотря на большой избыток радиуса, не заполняет свою ВКП, а имеет размеры, значительно меньшие, чем последняя.

4. «Контактные» системы, в которых компоненты близки по своим размерам к соответствующим ВКП (хотя и не обязательно в точности их заполняют). Эти системы подразделяются на два разных подтипа:

а) Контактные системы типа W UMa (KW), имеющие, в большинстве случаев, спектры главных компонентов более поздние, чем F0. Главные (более массивные) компоненты у этих систем не уклоняются значительно от зависимостей масса-светимость и масса-радиус для звезд главной последовательности в то время, как спутники обладают значительным избытком светимости (подобно субгигантам в ПР и РС-системах), но не обладают избытком радиуса (вследствие чего они располагаются на диаграмме спектр-светимость левее главной начальной последовательности, примерно параллельно ей);

б) Контактные системы ранних спектральных классов (КР) (F0 и более ранние), где оба компонента, близкие по размерам к своим ВКП, тем не менее, в большинстве случаев не уклоняются значительно от зависимостей масса-светимость и масса- радиус для звёзд главной последовательности.

5. Системы, имеющие хотя бы один компонент, являющийся либо сверхгигантом, либо гигантом позднего спектрального класса (С-Г). Такие системы сравнительно многочисленны среди изученных затменных переменных вследствие их высокой светимости и необычных физических характеристик, но в действительности они, по- видимому, должны составлять лишь небольшую долю от общего числа тесных двойных систем.

6. Системы, у которых, по крайней мере, один компонент лежит ниже главной последовательности и является горячим субкарликом или белым карликом (С-К). Сюда же были отнесены и системы, один из компонентов, которых является нейтронной звездой или «чёрной дырой», а также системы с WR-компонентами.

Подобная классификация была выполнена ранее М. А. Свечниковым в 1969 году для 197 затменных систем с известными абсолютными элементами. Она могла быть более или менее уверенно проведена также для затменно-двойных с известными фотометрическими элементами, у которых можно каким-либо образом оценить и отношение масс компонентов q=m2/m1 и тем самым определить относительные размеры соответствующих ВКП. Так, из примерно 500 затменных систем с известными фотометрическими элементами, имеющихся в карточном каталоге М. А. Свечникова, надежную классификацию можно было провести для 367 систем. В остальных случаях при отнесении системы к тому или иному типу имеется некоторая степень неуверенности, обычно из- за отсутствия или ненадёжности имеющихся данных о величине q.

В спектрах некоторых двойных звёзд наблюдается периодическое раздвоение или колебание положения спектральных линий. Если эти звёзды являются затменно-двойными то колебания линий происходят с тем же периодом, что и изменение блеска. При этом в моменты соединений, когда обе звезды движутся перпендикулярно к лучу зрения, отклонение спектральных линий от среднего положения равно нулю. В остальные моменты времени наблюдается раздвоение спектральных линий, общих для спектров обеих звёзд. Наибольшей величины раздвоение линий достигает при наибольшей лучевой скорости компонентов, одного — в направлении к наблюдателю, а другого — от него. Если наблюдаемый спектр принадлежит только одной звезде (а спектр второй не виден из-за её слабости), то вместо раздвоений линий наблюдается их смещение то в красную, то в синюю часть спектра. Зависимость от времени лучевой скорости, определенной по смещениям линий, называется кривой лучевых скоростей. Форма кривой лучевых скоростей определяется только двумя параметрами: эксцентриситетом орбиты е и долготой периастра w.

Таким образом, комбинацию этих двух параметров, или оба их в отдельности, можно определить, если известна кривая лучевых скоростей. Звёзды, двойственность которых может быть установлена только на основании спектральных наблюдений, называются спектрально-двойными. В отличие от затменных переменных звёзд, у которых плоскости их орбит составляют весьма малый угол с лучом зрения (i<90°), спектрально- двойные звёзды могут наблюдаться и в тех случаях, когда этот угол много больше. И только если плоскость орбиты близка к картинной плоскости, движение звёзд не вызывает заметного смещения линий, и тогда двойственность звезды обнаружена быть не может.

Если плоскость орбиты проходит через луч зрения (i = 90°), то наибольшее смещение спектральных линий позволяет определить значение полной скорости V движения звёзд относительно центра масс системы в двух диаметрально противоположных точках орбиты. Эти значения являются экстремумами кривой лучевых скоростей. Поскольку долгота периастра w и эксцентриситет известны на основании вида кривой лучевых скоростей, тем самым на основании теории эллиптического движения удается определить все элементы орбиты. Если же i >90°, то получаемые из наблюдений значения лучевых скоростей равны Vr = V sin i. Поэтому, хотя спектроскопически могут быть найдены абсолютные значения линейных параметров орбиты (выраженных в километрах), все они содержат неопределенный множитель sin i, который нельзя определить из спектроскопических наблюдений.

Из сказанного ясно, что в тех случаях, когда кривая лучевых скоростей известна для затменно-переменной звезды (для которой можно определить i), получаются наиболее полные и надежные элементы орбиты и характеристики звезд. При этом все линейные величины определяются в километрах. Удается найти не только размеры и формы звёзд, но даже и их массы.

В настоящее время известно около 2500 звёзд, двойственная природа которых установлена только на основании спектральных наблюдений. Примерно для 750 из них удалось получить кривые лучевых скоростей, позволяющие найти периоды обращения и форму орбиты.

Изучение спектрально-двойных звёзд особенно важно, так как оно позволяет получить представление о массах удалённых объектов большой светимости.

Сегодня известно уже около 100 тысяч физически двойных звёздных пар. Из них только 10% уверенно обнаруживают относительные орбитальные движения и лишь для 1% (примерно для 500 звёзд) оказывается возможным надёжно вычислить орбиты.

Невооруженным глазом можно увидеть звёздную пару Мицар-Алкор в созвездии Большой Медведицы. Сириус тоже является двойной звездой: Сириус А — белая звезда — вдвое больше Солнца, Сириус В — массивный невидимый спутник (белый карлик).

Но наряду с двойными существуют ещё и тройные, и кратные звёзды. Тройной звездой является а Центавра. Одна из трёх звёзд Проксима Центавра — ближайшая в настоящее время к Солнечной системе звёзда. Она является красным карликом, расположена на расстоянии 1,31 пк., свет от нее идет 4,2 года.

К четырёхкратным звёздам относятся Капелла, Ригель; Полярная звезда является пятикратной звездой, а звезда Кастор в созвездии Близнецов — шестикратной.

По мнению М.Я.Марова (1981), наше Солнце тоже двойная звезда, у неё есть спутница — звезда Немезида. Звезда Немезида является звездой-карликом примерно девятой звёздной величины, находится на сильно эксцентрической орбите с максимальным удалением до 2,5 св. лет. Период вращения Немезиды вокруг Солнца составляет 26 млн. лет. При приближении к Солнцу звезда Немезида сильно возмущает кометное облако, забрасывая кометы внутрь Солнечной системы. Интересно отметить, что период исчезновения некоторых видов на Земле составляет примерно 26-31 млн. лет. Следовательно, увеличение запыленности вследствие соударений с кометами может приводить к катастрофам на Земле.

Солнце является одиночной звездой. Но иногда две или несколько звезд расположены близко друг к другу и обращаются одна вокруг другой. Их называют двойными или кратными звездами. Их в Галактике очень много. Так, у звезды Мицар в созвездии Большой Медведицы есть спутник — Алькор. В зависимости от расстояния между ними двойные звезды обращаются друг вокруг друга быстро или медленно, и период обращения может составлять от нескольких дней до многих тысяч лет. Некоторые двойные звезды повернуты к Земле ребром плоскости своей орбиты, тогда одна звезда регулярно затмевает собой другую. При этом общая яркость звезд ослабевает. Мы воспринимаем это как перемену блеска звезды. Например, «дьявольская звезда» Алголь в созвездии Персея с древних времен известна как переменная звезда. Каждые 69 часов, — таков период обращения звезд в этой двойной системе, — происходит затмение более яркой звезды ее холодным и менее ярким соседом. С Земли это воспринимается как уменьшение ее блеска. Через десять часов звезды расходятся, и яркость системы опять становится максимальной.

Двойные звезды — это две (иногда встречается три и более) звезды, обращающиеся вокруг общего центра тяжести. Существуют разные двойные звезды: бывают две похожие звезды в паре, а бывают разные (как правило, это красный гигант и белый карлик). Но, вне зависимости от их типа, эти звезды наиболее хорошо поддаются изучению: для них, в отличие от обычных звезд, анализируя их взаимодействие можно выяснить почти все параметры, включая массу, форму орбит и даже примерно выяснить характеристики близкорасположенных к ним звезд. Как правило, эти звезды имеют несколько вытянутую форму вследствие взаимного притяжения. Много таких звезд открыл и изучил в начале нашего века русский астроном С. Н. Блажко. Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление весьма распространенное.

Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находятся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд. Двойные звезды

Солнце является одиночной звездой. Но иногда две или несколько звезд расположены близко друг к другу и обращаются одна вокруг другой. Их называют двойными или кратными звездами. Их в Галактике очень много. Так, у звезды Мицар в созвездии Большой Медведицы есть спутник — Алькор. В зависимости от расстояния между ними двойные звезды обращаются друг вокруг друга быстро или медленно, и период обращения может составлять от нескольких дней до многих тысяч лет. Некоторые двойные звезды повернуты к Земле ребром плоскости своей орбиты, тогда одна звезда регулярно затмевает собой другую. При этом общая яркость звезд ослабевает. Мы воспринимаем это как перемену блеска звезды. Например, «дьявольская звезда» Алголь в созвездии Персея с древних времен известна как переменная звезда. Каждые 69 часов, — таков период обращения звезд в этой двойной системе, — происходит затмение более яркой звезды ее холодным и менее ярким соседом. С Земли это воспринимается как уменьшение ее блеска. Через десять часов звезды расходятся, и яркость системы опять становится максимальной.

Двойные звезды — это две (иногда встречается три и более) звезды, обращающиеся вокруг общего центра тяжести. Существуют разные двойные звезды: бывают две похожие звезды в паре, а бывают разные (как правило, это красный гигант и белый карлик). Но, вне зависимости от их типа, эти звезды наиболее хорошо поддаются изучению: для них, в отличие от обычных звезд, анализируя их взаимодействие можно выяснить почти все параметры, включая массу, форму орбит и даже примерно выяснить характеристики близкорасположенных к ним звезд. Как правило, эти звезды имеют несколько вытянутую форму вследствие взаимного притяжения. Много таких звезд открыл и изучил в начале нашего века русский астроном С. Н. Блажко. Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление весьма распространенное.

Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находятся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд.

Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром гравитации этих звезд. Это можно представить себе как точки опоры, если вообразить звезды сидящими на детских качелях: каждая на своем конце доски, положенной на бревно. Чем дальше звезды друг от друга, тем дольше длятся их пути по орбитам. Большинство двойных звезд (или просто — двойных) слишком близки друг к другу, чтобы их можно было различить по отдельности даже в самые мощные телескопы. Если расстояние между партнерами достаточно велико, орбитальный период может измеряться годами, а иногда целым столетием или даже больше. Двойные звезды, которые возможно увидеть раздельно, называются видимыми двойными.

Видимое расстояние между звездами в двойной звезде измеряется в секундах дуги. Минута дуги (‘) содержит 60 секунд («), 60 минут дуги составляют градус (°); таким образом, одна секунда дуги составляет 1/3600 градуса. Видимый диаметр Луны составляет около 30 минут дуги или 0,5 градуса.

Двойные звезды с наиболее удаленными компонентами (в несколько секунд дуги и более) можно увидеть в небольшие телескопы и даже бинокли, но чем ближе друг к другу компоненты двойной звезды, тем больше должна быть апертура телескопа. Стабильность состояния атмосферы, называемая видимостью, также влияет на возможность различить близкие двойные звезды. Наиболее яркие примеры наблюдаемых двойных звезд описаны в тексте, сопровождающем каждую карту.

Спектроскопическая двойная звезда — это пара звезд, которые расположены слишком близко друг к другу и неразличимы в телескоп; существование второй звезды выявляется при анализе света с помощью спектроскопа.

Типы двойных звезд

Двойные звезды подразделяют в зависимости от способа их наблюдений на визуально-двойные, фотометрические двойные, спектрально-двойные и спекл-интерферометрические двойные звезды.

Визуально-двойные звезды.

Визуально-двойные звезды представляют собой довольно широкие пары, уже хорошо различимые при наблюдениях с телескопом умеренных размеров. Эти звезды в основном удовлетворяют условиям (1). Наблюдения визуально-двойных звезд производятся либо визуально с помощью телескопов, снабженных микрометром, либо фотографически с помощью телескопов-астрографов. В результате наблюдений определяют взаимное угловое расстояние
r
компонентов двойной звезды
AB
, а также позиционный угол
s
направления на небесной сфере дуги
AB
относительно круга склонения, проходящего через компоненту
A
(см. рис. 1). Эти данные по мере их накопления используют для построения дуги видимой орбиты звезды-спутника
B
относительно более яркой главной звезды
A
. Если наблюдения продолжаются достаточно долго (несколько десятков лет и более), можно проследить полное обращение звезды
B
относительно
A
. Типичными представителями визуально-двойных звезд могут служить звезды γ Девы (
r
=1″-6″, период обращения
P
=140 лет) или хорошо известная любителям астрономии близкая к Солнцу звезда 61 Лебедя (
r
=10″-35″,
P
P=350 лет). К настоящему времени известно около 100000 визуально-двойных звезд.

Рис. 1. Схема визуально-двойной системы. Указаны позиционный угол s

положения спутника
B
относительно главной (более яркой) звезды
A
и расстояние
r
между ними

Фотометрические двойные звезды.

Фотометрические двойные звезды представляют собой очень тесные пары, обращающиеся с периодом от нескольких часов до нескольких дней по орбитам, радиус которых сравним с размерами самих звезд. Плоскости орбит этих звезд и луч зрения наблюдателя практически совмещаются. Эти звезды обнаруживают по явлениям затмений, когда одна из компонент проходит впереди или сзади другой относительно наблюдателя. Астроном замечает это явление как падение яркости наблюдаемой звезды, которое происходит регулярно с поразительной точностью. Таким образом, фотометрические двойные звезды являются затменно-переменными звездами. Астрономы интенсивно наблюдают их наряду с другими переменными звездами. В результате наблюдений определяют кривую блеска переменной звезды, отражающую изменение яркости звезды со временем, то есть зависимость вида
m
(
t
) . Типичным представителем затменно-переменных звезд является звезда второй величины β Персея (Алголь), которая регулярно затмевается на 9 часов с периодом 2,86731 суток; падение блеска в минимуме у этой звезды составляет 2,3 звездной величины. К настоящему времени известно более 500 фотометрических двойных звезд.

Спектрально-двойные звезды.

Спектрально-двойные звезды, так же как и фотометрические двойные, представляют собой очень тесные пары, обращающиеся в плоскости, образующей с направлением луча зрения наблюдателя малый угол. Спектрально-двойные звезды, как правило, не удается разделить на компоненты даже при использовании телескопов с самыми большими диаметрами, однако принадлежность системы к этому типу двойных звезд легко обнаруживается при спектроскопических наблюдениях лучевых скоростей. Оказалось, что линии в спектрах таких звезд регулярно смещаются или раздваиваются. Это свидетельствует о том, что наблюдаемая звезда состоит по меньшей мере из двух компонентов, обращающихся вокруг общего центра масс с большой скоростью. В результате наблюдений определяют кривые лучевых скоростей компонентов (иногда одной компоненты, более яркой), характеризующие периодические колебания их лучевых скоростей, а также период этих колебаний и амплитуды. Типичным представителем спектрально-двойных звезд может служить звезда ζ Большой Медведицы, у которой наблюдаются спектры обеих компонент, период колебаний 10 дней, амплитуда около 50 км/с. Это первая исследованная спектрально-двойная звезда, открытая Э. Пиккерингом в 1888 году. В настоящее время известно около 1500 спектрально-двойных звезд.

Спекл-интерферометрические двойные звезды.

Спекл-интерферометрические двойные звезды открыты сравнительно недавно, в 70-х годах нашего века, в результате использования современных больших телескопов для получения спекл-изображений некоторых ярких звезд. Анализ этих изображений с помощью электронной техники позволяет довести разрешающую способность телескопа до естественного предела, который определяется размерами дифракционного изображения звезды, что составляет приблизительно 0″,02 для телескопа с диаметром зеркала 6 м. Пионерами спекл-интерферометрических наблюдений двойных звезд являются Э. Мак Алистер в США и Ю.Ю. Балега в России. К настоящему времени методами спекл-интерферометрии измерено несколько сотен двойных звезд с разрешением
r

Двойные фотометрические звезды

О двойственной природе таких звезд можно узнать только по периодическим колебаниям из блеска. Во время своего движения звезды такого типа по очереди загораживают друг друга, поэтому их нередко называют затменно-двойными. Орбитальные плоскости данных звезд приближены к направлению луча зрения. Чем меньше площадь затмения, тем ниже блеск звезды. Изучив кривую блеска, исследователь может рассчитать угол наклона плоскости орбиты. При фиксации двух затмений на кривой блеска будут два минимума (снижения). Период, когда отмечаются 3 последовательных минимума на кривой блеска, называют орбитальным периодом.

B Cyq - бета Лебедя. Альбирео. Звездная пара в созвездии Лебедя. Голубоватый спутник, который в 200 раз ярче Солнце, вращается вокруг желтой звезды, превосходящая Солнце по яркости в 1000 раз

B Cyq — бета Лебедя. Альбирео. Звездная пара в созвездии Лебедя. Голубоватый спутник, который в 200 раз ярче Солнце, вращается вокруг желтой звезды, превосходящая Солнце по яркости в 1000 раз

Период двойных звезд продолжается от пары часов до нескольких суток, что делает его более коротким по отношению к периоду визуально-двойных звезд (оптические двойные звезды).

Исследование визуально-двойных звезд

Наблюдения визуально-двойных звезд имеют фундаментальное значение для астрономии. Честь первооткрывателя двойных звезд бесспорно принадлежит английскому астроному Вильяму Гершелю (1738-1822 годы). Гершель больше известен как астроном, который самостоятельно строил гигантские для того времени телескопы-рефлекторы, начал систематические исследования Млечного Пути и открыл планету Уран. Наблюдения двойных звезд Гершель предпринял в 1770-1780 годах при попытке измерить звездные параллаксы, используя идею Галилея о возможности определить параллакс яркой звезды, составляющей оптическую пару со слабой. Однако уже первые наблюдения таких пар подтвердили догадку Гершеля, что многие из наблюдаемых им пар – физические двойные звезды.

Повторные наблюдения этих звезд через 20 лет показали наличие относительных смещений компонентов, похожие на орбитальное движение. К 1803 году Гершель опубликовал списки нескольких сотен двойных звезд и отметил среди них 50, у которых обнаружилось смещение компонентов. В дальнейшем наблюдения двойных звезд продолжил сын Вильяма – Джон Гершель, перенесший свой телескоп в Южную Африку. В Европе планомерные наблюдения двойных звезд организовал В. Струве на обсерватории в Тарту. В 1824 году Струве применил для своих наблюдений телескоп-рефрактор с объективом Фраунгофера диаметром D

=24 см и фокусным расстоянием
F
=410 см (
D
/
F
=24/410) на экваториальной установке с часовым механизмом, который можно считать прототипом современных телескопов-рефракторов. Телескопы Гершелей были смонтированы на азимутальной установке, что делало их очень неудобными в обращении. С новым инструментом В. Струве открыл 3134 звездные пары. Результаты его наблюдений опубликованы в трех каталогах, из которых наибольшей известностью пользуется каталог «Двойные и кратные звезды, измеренные микрометрически», опубликованный в 1837 году. Этот каталог сохраняет свое значение и в наше время как первая эпоха взаимных положений компонентов нескольких тысяч двойных звезд. Точность измерений В. Струве – на уровне лучших современных визуально-микрометрических наблюдений.

В конце XIX века инициативу в исследованиях двойных звезд перехватили американские астрономы, использовавшие в своих наблюдениях новейшие рефракторы высшего класса с объективами Кларка: рефрактор обсерватории Дирборн с диаметром объектива D

=47 см, рефрактор Вашингтонской морской обсерватории (
D
=65 см) и рефрактор Ликской обсерватории (
D
=91 см). Заслугой американских астрономов было то, что они не только наблюдали двойные звезды, но собрали и систематизировали громадный наблюдательный материал по этим звездам. Эта работа воплощена в «Общем каталоге 13665 звезд» Ш.У. Бернхема (1906 год), охватывающем все известные к тому времени наблюдения двойных звезд в зоне склонений от -30° до Северного полюса. В новое время эта традиция продолжена американским астрономом Р.Дж. Айткеном, создавшим «Новый общий каталог 17180 двойных звезд» (1934 год) и астрономами Ликской обсерватории Г.М. Джефферсом и В.Х. ван ден Босом, составившими «Индекс каталог 64247 двойных звезд» (1961 год). В новое время наблюдения визуально-двойных звезд продолжались во многих странах мира как прежними, визуальными, так и новыми, фотографическими и фотоэлектрическими методами. После пионерских работ Э. Герцшпрунга (1914 год) широкое распространение получили фотографические наблюдения двойных звезд с применением старых – визуальных рефракторов и фотографических пластинок, сенсибилизированных (то есть сделанных особенно чувствительными) к визуальным лучам (орто- и панхром). Особенно интенсивно фотографические наблюдения двойных звезд производились на обсерваториях США Дирборн и Вашингтон, в России в Пулкове на 26-дюймовом рефракторе Цейсса после второй мировой войны. Возрастающий интерес к наблюдениям двойных звезд непосредственно связан с теми новыми знаниями, которые стало возможным получать по мере накопления наблюдательных данных о двойных звездах.

Главные результаты наблюдений двойных звезд

Результаты продолжительных систематических наблюдений визуально-двойных звезд выражаются таблицами данных (t

,
r
,
s
), характеризующих для каждой звезды видимое орбитальное движение ее компонентов. Анализируя эти данные, астрономы уже в XIX веке убедились, что видимое относительное движение компонентов совершается по эллипсу и удовлетворяет закону площадей, то есть происходит в согласии с законами Кеплера. Отсюда следует, что обращение в системах двойных звезд подчиняется закону всемирного тяготения Ньютона, так как законы Кеплера, как доказал еще сам Ньютон, являются следствием единого закона тяготения. Этот вывод не был неожиданным для астрономов ХIХ века, которые уже убедились в правильности закона тяготения в процессе создания стройной теории движений планет Солнечной системы. Однако подтверждение действенности закона тяготения в звездном околосолнечном пространстве безусловно имело громадное научное и философское значение. Перед астрономами открылась реальная возможность «взвешивать» звезды, то есть определять их массы, опираясь только на закон Ньютона и наблюдения. Для решения поставленной задачи достаточно было определить из наблюдений период обращения двойной звезды
P
и большую полуось ее орбитального эллипса
a
. Далее следовало воспользоваться третьим законом Кеплера в ньютоновском обобщении:

a
3/
P
2=
M
1+
M
2.
(2)

Здесь
a
– большая полуось истинной орбиты звезды
B
относительно звезды
A
, выраженная в астрономических единицах (а.е.),
P
– период обращения, выраженный в годах;
M
1 и
M
2 – массы компонентов
A
и
B
, выраженные в единицах массы Солнца
M
ʘ . Главная трудность на этом пути состоит, во-первых, в определении орбитальных элементов
a
и
P
и, во-вторых, в определении расстояния до исследуемой звезды
d
, то есть ее параллакса
p
(параллакс по определению есть
p
″=206265(а.е./
r
)=1/
R
. Здесь a.e. и
r
задаются в километрах, а
R
– в парсеках). Первую трудность можно было преодолеть только после накопления рядов наблюдений, охватывающих минимум половину периода обращения звезды, то есть 50-100 лет для самых близких визуально-двойных звезд. Кроме того, необходимо было разработать эффективные методы определения истинной орбиты двойной звезды по ее проекции на небесной сфере. Подходящие методы – графические и аналитические – позволяли довольно надежно определить элементы истинной орбиты визуально-двойной звезды, включая период обращения и большую полуось орбиты
a
(в единицах секунды дуги), однако только для тех двойных звезд, период обращения которых не превышал 100-150 лет. Таких звезд оказалось немного. К 1850 году удалось определить только 20 орбит наиболее тесных двойных звезд с периодом обращения до 100 лет.

Темпы накопления орбит визуально-двойных звезд не возрастали до 70-х годов нашего века несмотря на прогресс техники наблюдений и их массовость. Это не удивительно, так как большинство наблюдаемых визуально или фотографически двойных звезд ( r

>0″,5) имеют периоды обращений от сотни до нескольких тысяч лет.

Вторая трудность на пути к определению масс звезд по формуле (2) преодолевается посредством измерений тригонометрических параллаксов исследуемых двойных звезд, ибо между a

(в астрономических единицах) в формуле (1) и
a
(в угловых секундах) существует простое соотношение

a
[а.е.]=
a
″/
p
″,
(3)

где
a
″ и
p
″ – большая полуось истинной орбиты двойной звезды и ее параллакс, также выраженный в единицах секунды дуги.

Однако до конца ХIХ века астрономы не научились определять тригонометрические параллаксы звезд с достаточной точностью (то есть с ошибкой, меньшей 0″,010) и это существенно повлияло на развитие звездной астрономии. Только развитие астрофотографии, точнее ее специализации – фотографической астрометрии, обеспечило приемлемую точность определения параллаксов из наблюдений. В середине нашего века тригонометрические параллаксы звезд стали определять со средней квадратической ошибкой ±(0″,005-0″,008), а позднее (1960 год), в связи с вводом в строй специального астрометрического рефлектора во Флагстафе (США) – (D

=150 см,
F
=18 м) – с точностью до ±(0″,003-0″,004). Таким образом, к настоящему времени параллаксы звезд, находящихся на расстояниях до 20 пк от Солнца (
p
>0″,040), могут определяться с относительной ошибкой порядка 10 %, соответствующие ошибки определения суммы масс компонентов возрастают в 3 раза, то есть до 30 %, как это следует из формул (2) и (3). Для ближайших звезд, находящихся на расстоянии до 10 пк (
p
>0″,100), ошибка в определении суммы масс составит не более 15 %. От суммы масс компонентов двойной звезды естественно было перейти к оценкам масс компонентов. В отдельных случаях и эту задачу удалось решить, исходя только из законов механики и используя наблюдения лучевых скоростей.

Успехи, достигнутые астрономами в области определения орбит и параллаксов близких двойных звезд, позволили получить надежные оценки масс для нескольких десятков звезд и даже вывести некоторые статистические зависимости. Важнейшие результаты в этой области заключаются в следующем.

а) Массы всех исследованных звезд заключены в пределах от 0,07 до 20,0 масс Солнца M

ʘ.

б) Массы 90 % звезд заключены в пределах от 0,4 до 2,0 M

ʘ.

в) Для звезд главной последовательности (статистическая общность звезд, к которой принадлежит Солнце) имеет место статистическая зависимость

L
=
KM
3;
(4)

здесь
L
– светимость звезды,
M
– масса,
K
– коэффициент пропорциональности.

Рис. 2. Схематическое изображение диаграммы Герцшпрунга-Рессела. Основная масса звезд (показана красным цветом) группируется возле главной последовательности (ГП)

На рис. 2 представлена диаграмма Герцшпрунга-Рессела, представляющая собой зависимость между абсолютной звездной величиной звезд MV

(которая по определенному закону зависит от светимости
L
звезды) и их показателями цвета (
B

V
) и (
U

B
), которые можно измерить с точностью до 0,001 звездной величины (показатель (
B

V
) – это разность звездных величин звезды в голубом (
B
), ~4400 , и желтом (
V
), ~5500, диапазонах спектра, показатель (
U

B
) – соответственно в синем (
U
), ~3600, и голубом (
B
) диапазонах). Основная масса звезд (показана красным цветом) группируется возле главной последовательности (ГП).

г) Компоненты двойных звезд чаще бывают представлены звездами одной светимости и одного спектрального класса, но бывают и сильные различия. Есть веские основания считать, что компоненты двойной звезды сформировались одновременно и в дальнейшем эволюционировали параллельно, оставаясь в системе. Следовательно, если (4) справедливо, то приходится заключить, что распределение первоначальной массы между компонентами было фактором, определяющим ход эволюции.

Яркость новой V906 Киля объяснили ударным происхождением

ESO/IDA/Danish 1.5 m/R.Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron

Значительная часть светимости вспышки новой V906 Carinae — результат ударных процессов. К такому выводу пришла команда астрономов из 17 стран, включающая российских исследователей, по итогам наблюдений вспышки в нескольких диапазонах. Статья опубликована в Nature Astronomy

.

Вспышки классических новых звезд происходят как результат термоядерного взрыва, происходящего на поверхности белого карлика, который входит в состав двойной системы. В течение длительного времени считалось, что основная часть светимости классической новой обусловлена продолжением термоядерного горения на поверхности белого карлика из-за падения на него вещества компаньона. Последние наблюдения гамма-вспышек гигаэлектронвольтовой мощности классической новой V906 Киля, расположенной в направлении знаменитой Туманности Киля, показывают, что внутренние ударные явления, когда плотные массы вещества сталкиваются на большой скорости, могут иметь преобладающее значение в общей светимости новой.

В случае классической новой внешняя оболочка белого карлика с массой от одной тысячной до одной десятимиллионной массы Солнца расширяется со скоростью от 500 до 5000 километров в секунду. В результате происходит кратковременная вспышка, называемая транзиентом, и система увеличивает яркость в тысячи или миллионы раз, достигая, в некоторых случаях, предела видимости невооруженным глазом. После начальной фазы выброса оболочки, остаточные ядерные реакции проходят на поверхности горячего белого карлика и звезда приходит к квазистабильной фазе Эддингтоновского предела светимости для белых карликов.

Кривая оптического блеска гладко спадает от максимума по мере того, как фотосфера опускается и максимум спектральной энергии смещается в синюю область переходя из видимого диапазона в ультрафиолетовый и мягкий рентген. Однако некоторые новые звезды испытывают беспорядочные вспышки с различной периодичностью, длительностью и амплитудой. Такие явления недостаточно хорошо изучены и могут быть объяснены нестабильностью в оболочке или аккреционном диске белого карлика, либо особенностями передаваемых порций масс звезды-компаньона.

Группа исследователей из 17 стран, в том числе из России, провела внеатмосферные наблюдения одновременно в оптическом и гамма-диапазонах новой звезды V906 Киля и проанализировала информацию о нескольких хорошо скоррелированных между собой вспышках в наблюдаемых областях. Во время таких вспышек светимость звезды V906 Киля увеличивалась в два раза — это говорит о том, что источником была ударная волна. Исследователи также обнаружили сопутствующее слабое рентгеновское излучение от глубинных столкновений, которое подтверждает, что энергия ударного столкновения, вырабатываясь изначально в виде жесткого рентгеновского излучения и в результате преобразования через различные механизмы, выделяется в диапазонах более длинных волн. Полученные данные от радио до гамма-диапазонов дают прямое доказательство того, что ударные события — основные источники светимости классических новых и других оптических нестационарных явлений (транзиентов).

Оптический транзиент V906

Carinae (ASASSN-18fv) был открыт и спектроскопическим способом подтвержден в качестве классической новой обзором All-Sky Automated Survey 20 марта 2020 года. До вспышки обзоры Gaia показывали на этом месте объект звездной величины 20,1, а уже 21 марта видимая звездная величина V906 Car составила 7,45. По счастливой случайности объект попал в поле зрения монитора BRIght Target Explorer (BRITE) системы наноспутников и показал беспрецедентную кривую блеска с самого начала взрывного процесса 16 марта 2018 года. Высокое разрешение кривой оптического блеска системой BRITE показало в течение первого месяца от начала взрыва серию из восьми следующих за максимумами вспышек. Каждая из вспышек продолжалась от одного до трех дней и имела амплитуду до 0,8 звездной величины. Как правило, подобные наблюдения, проводимые наземными инструментами, не давали такого разрешения и кривая блеска содержала значительные разрывы и настолько незначительные промежутки времени распознать было практически невозможно.

«Во время пика яркости BRITE-Toronto зарегистрировал восемь коротких световых вспышек, каждая следующая была почти в два раза сильнее предыдущей. Мы видели намеки на эти события и в наземных измерениях, но никогда еще не наблюдали их так ясно. Обычно мы отслеживаем звезды этого класса с Земли с помощью гораздо меньшего количества наблюдений, кроме того, между измерениями часто возникают большие перерывы, и поэтому не удается зафиксировать некоторые быстрые изменения», — приводит слова сотрудника Государственного астрономического института имени Штернберга МГУ Кирилла Соколовского пресс-служба Российского научного фонда.

Наблюдения в гигаэлектронвольтовом гамма-диапазоне объекта V906 Киля

начались примерно через 23 дня с момента вспышки с помощью телескопа Large Area Telescope (LAT), установленного на космической гамма-обсерватории Ферми. Гамма-излучение сохранялось до 46-го дня после взрыва. Измеренный поток от объекта позволяет считать V906 Car наиболее мощным гамма-источником из новых звезд.

Исключительная яркость этой новой в гамма-диапазоне позволила получить детальную кривую блеска с несколькими пиками. Сравнивая ее с кривой, полученной на инструменте BRITE, исследователи пришли к выводу, что пики гамма-излучения совпадают по времени со вспышками в оптическом диапазоне. Эта корреляция указывает, что оптическое и гамма-излучение новой порождены процессами одной природы. Вспышки светимости одновременно в обоих диапазонах это результат ударных явлений — то, что происходит в случае взрыва сверхновых IIn типа. Типичная скорость расширения оболочки новой звезды 1000 километров в секунду и время прихода гамма-пиков (около недели после вспышки) указывает на то, что ударный материал имел высокую плотность порядка 1010 грамм на кубический сантиметр. В случае таких плотностей ударная волна переходит в излучение поскольку при скоростях 1000 километров в секунду газ нагревается до температуры десятки миллионов градусов и испускает жесткое рентгеновское излучение. Далее, по причине высокой плотности вещества рентгеновское излучение истощается и переходит в более низкоэнергетические виды: в оптический и инфракрасный диапазоны.

Временная структура и светимость других оптических транзиентов, таких как сверхновые типа IIn или Ia (связанная с взаимодействием с окружающей межзвездной средой) и сверхмощные сверхновые звезды привели авторов к выводу, что подобные события имеют ударную природу — таким образом основная часть болометрической светимости объектов изначально возникает в виде рентгеновского излучения от ударных явлений, которое затем поглощается и излучается вновь в оптическом диапазоне. Подобные же рассуждения проводятся к объяснению светимости красных новых звезд, звездных слияний и явлений приливного разрушения. Таким образом, ударными явлениями можно объяснить большинство транзиентов — краткосрочных явлений на небе вспышечной природы. Однако никогда до этого астрономы не встречали прямых доказательств ударного происхождения основной части болометрической светимости новой звезды.

Наблюдения демонстрируют, что значительная часть светимости проявляющейся в оптическом диапазоне в большой степени поглощенные, энергетические ударные волны взрывных явлений в транзиентах. Наблюдения также показали, что эти же ударные явления могут ускорять заряженные частицы до релятивистских скоростей. Таким образом, сверхновая ударного типа может быть источником космических лучей. Используя современные обзоры, такие как ASAS-SN, Zwicky (Цвикки) Transient Facility (ZTF) и обзор обсерватории Веры Рубин ученые смогут в ближайшем будущем открыть транзиенты с еще большей светимостью. Новые звезды в нашей галактике остаются важными полигонами для проверки физических механизмов протекания экзотических событий в глубоком космосе.

О наблюдениях новых звезд в нашей галактике мы получаем информацию достаточно часто — так, в конце апреля и начале мая 2018 года новую звезду в созвездии Персея можно было наблюдать с помощью любительских телескопов. Ударными явлениями объясняются и наиболее мощные вспышки новых звезд, когда звездный ветер догоняет газ сброшенной оболочки звезды.
Евгения Скареднева

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: