Что такое нейтронная звезда?

НЕЙТРОННАЯ ЗВЕЗДА,
звезда, в основном состоящая из нейтронов. Нейтрон – это нейтральная субатомная частица, одна из главных составляющих вещества.
Также по теме:
ПУЛЬСАР

Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.

Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км.

Также по теме:

ЗВЕЗДЫ

Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле. От коллапса эту звезду удерживает «давление вырождения» плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу.

У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 1012–1013 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.

Рентгеновские двойные.

С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10–30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.

Общие сведения

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. C 1990-х годов некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше.

Магнитные поля, превышающие «критическое» значение 4,414·1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec

², привносят качественно новое в физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2020 году открыто более 2500 нейтронных звёзд. Порядка 90 % из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака, нейтронная звезда может быть в этой ситуации видна с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003 % излучаемой энергии (соответствует 10 звёздной величине)[7].

Состав.

Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже – твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4Ч1011 г/см3, доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на «море» из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2Ч1014 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная «жидкость» с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронной звезде образуются наиболее необычные формы вещества. Может быть, нейтроны и протоны распадаются на еще более мелкие частицы – кварки; возможно также, что рождается много пи-мезонов, которые образуют так называемый пионный конденсат. См

.
также
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; СВЕРХПРОВОДИМОСТЬ; СВЕРХТЕКУЧЕСТЬ.

Какие тайны хранят внутри нейтронные звезды? У физиков уже есть ответы

Астрономы знают очень много о том, как рождаются нейтронные звезды. Но что именно происходит потом внутри этих сверхплотных ядер, остается загадкой. Некоторые исследователи предполагают, что они состоят только из нейтронов. Другие считают, что невероятное давление уплотняет материал вблизи центра в более экзотические частицы и состояния материи. Теперь, после десятилетий споров, исследователи приближаются к разгадке этой тайны, отчасти благодаря инструменту на Международной космической станции, называемому «Исследователь внутреннего состава нейтронной звезды» (NICER).

В декабре прошлого года эта космическая обсерватория предоставила астрономам одни из самых точных измерений массы и радиуса нейтронной звезды, а также неожиданные данные о ее магнитном поле. Другие данные поступают из исследовательских центров, занимающихся гравитационными волнами, с помощью которых можно наблюдать, как искажаются нейтронные звезды при столкновении. Такие объединенные наблюдения дают исследователям возможность делать выводы о том, что заполняет внутренности нейтронных звезд.

Для многих специалистов в этой области такие результаты знаменуют собой поворотный момент в изучении одних из самых загадочных объектов Вселенной. «Это начало золотого века физики нейтронных звезд», — говорит Юрген Шаффнер-Билич, физик-теоретик из Университета Гете во Франкфурте, Германия.

Запущенный в 2020 году на борту ракеты SpaceX Falcon 9, телескоп стоимостью 62 миллиона долларов США находится за пределами МКС и собирает рентгеновские лучи, исходящие от пульсаров — вращающихся нейтронных звезд, которые излучают заряженные частицы в узких лучах, которые с одинаковой периодичностью «чиркают» по Земле. Рентгеновские лучи исходят из горячих точек на северном и южном магнитных полюсах пульсара с температурами в несколько миллионов градусов, где мощное магнитное поле отрывает заряженные частицы с поверхности и отправляет их в космос.

NICER обнаруживает эти рентгеновские лучи с помощью 56 пластинок с золотым напылением, и отмечает время их прибытия с точностью до 100 наносекунд. Благодаря этой способности исследователи могут точно отслеживать горячие точки, когда нейтронная звезда вращается со скоростью до 1000 оборотов в секунду. Гравитация таких космических тел крайне велика, поэтому они искривляют пространство-время настолько сильно, что NICER также обнаруживает излучение от тех нейтронных звезд, лучи из горячих точек которых не направлены в сторону Земли.

Общая теория относительности Эйнштейна дает возможность вычислить отношение массы звезды к радиусу через величину искривления света. Эти и другие наблюдения позволяют астрофизикам точно определить массы и радиусы таких мертвых звезд. И, в свою очередь, эти два свойства могут помочь в определении того, что происходит внутри ядер.

Глубокая темная тайна

Нейтронные звезды становятся тем сложнее, чем глубже мы пытаемся их узнать. Считается, что под тонкой атмосферой, состоящей в основном из водорода и гелия, остатки звезд имеют внешнюю кору толщиной всего в один-два сантиметра, содержащую атомные ядра и свободно перемещающиеся электроны. Исследователи полагают, что ионизированные элементы упаковываются вместе в следующем слое, создавая решетку во внутренней коре. Еще ниже давление настолько велико, что почти все протоны соединяются с электронами, превращаясь в нейтроны. То, что происходит еще глубже, в лучшем случае туманно.

Физики имеют некоторое представление о том, что там происходит, благодаря ускорителям частиц на Земле. На таких объектах, как Брукхейвенская национальная лаборатория в Аптоне и Большой адронный коллайдер CERN близ Женевы, исследователи объединяют вместе тяжелые атомы, такие как свинец и золото, для создания небольшого количества сверхплотного материала. Но эти кинетические эксперименты генерируют вспышки с температурами в миллиарды или даже триллионы градусов, в которых протоны и нейтроны превращаются в суп из составляющих их кварков и глюонов. Современные приборы мало что могут фиксировать в таких фантастических условиях.

Вполне возможно, что кварки и глюоны свободно перемещаются внутри нейтронных звезд. Или же экстремальные энергии могут привести к созданию частиц, называемых гиперонами. Подобно нейтронам, эти частицы содержат три кварка. Но в то время как нейтроны содержат самые простые и низкоэнергетические кварки, известные как верхний и нижний, в гиперионе по крайней мере один из них заменен экзотическим «странным» кварком. Другая возможность заключается в том, что центр нейтронной звезды – это конденсат Бозе-Эйнштейна, состояние материи, при котором все субатомные частицы действуют как единое квантово-механическое целое.

Важно отметить, что каждая теоретическая модель напрямую зависит от колоссальной гравитации нейтронной звезды. Они имеют различные радиусы и массы, и, следовательно, различные внутренние давления. Например, нейтронная звезда с центром, состоящим из конденсата Бозе-Эйнштейна, вероятно, будет иметь меньший радиус, чем звезда, полностью состоящая из «обычных» нейтронов. А нейтронная звезда с гиперионным ядром будет иметь еще меньший радиус.

Чтобы выяснить, какая из моделей имеет право на существование (или, может быть, они все верны при различных условиях), требуются точные измерения размера и массы нейтронных звезд, но исследователи пока не смогли довести свои методы до нужного уровня, чтобы сказать, какая из возможностей наиболее вероятна. Астрономы обычно вычисляют массы, наблюдая за нейтронными звездами в парах. Когда объекты вращаются вокруг друг друга, они гравитационно влияют на компаньона, что позволяет физиками «взвесить» их.

Массы примерно 35 нейтронных звезд были измерены таким образом, хотя погрешность доходит до одной массы Солнца, то есть до 50%. Всего лишь для десятка или около того звезд были рассчитаны радиусы, но во многих случаях современные методы не могут определить это значение с точностью выше, чем несколько километров — а ведь это погрешность до одной пятой размера этих необычных космических объектов.

Метод измерения горячих точек впервые использовался рентгеновской обсерваторией XMM-Newton Европейского космического агентства, которая была запущена в 1999 году и все еще работает. Современный NICER в четыре раза более чувствителен и имеет в сотни раз лучшее временное разрешение.

В течение следующих двух-трех лет команда рассчитывает использовать более точные методы для определения масс и габаритов еще около полудюжины нейтронных звезд, фиксируя их радиусы с точностью до полукилометра. С такой точностью группа будет достаточно подготовлена, чтобы начать конструировать то, что известно как уравнение состояния нейтронной звезды, которое связывает ее массу с радиусом или, что эквивалентно, внутреннее давление с плотностью.

Если ученым особенно повезет и космос предоставит особенно хорошие данные, NICER поможет отбросить некоторые предварительные версии этого уравнения. Но большинство физиков считают, что сама обсерватория, скорее всего, сузит, а не полностью исключит модели того, что происходит в ядрах этих таинственных объектов.
Кропотливая работа
Первой целью NICER был J0030+0451, изолированный пульсар, который вращается примерно 200 раз в секунду и находится в 337 парсеках (1100 световых лет) от Земли, в созвездии Рыб.

Две группы, одна из которых базируется в Амстердамском университете, а другая возглавляется исследователями из Мэрилендского университета, внимательно изучили 850 часов наблюдений, постоянно проверяя друг друга. Поскольку кривые блеска горячих точек очень сложны, группам потребовались суперкомпьютеры для моделирования различных конфигураций и определения того, какие из них лучше всего соответствуют данным.

В итоге они получили схожие результаты, обнаружив, что масса J0030 в 1.3-1.4 раза больше массы Солнца, а радиус составляет примерно 13 километров. Эти результаты не являются окончательными, но они могут быть использованы для подтверждения или опровержения моделей, говорящих о внутренностях нейтронных дыр.

Большим сюрпризом для исследователей оказались форма и положения горячих точек. Канонический вид нейтронных звезд предполагает, что линии магнитного поля похожи на те, что окружают стержневой магнит, с северным и южным магнитными полюсами на противоположных концах звезды, где и расположены круглые горячие точки. В отличие от этого, моделирование голландцев на суперкомпьютере показало, что обе горячие точки J0030 находятся в его южном полушарии, и что одна из них имеет форму полумесяца. Мэрилендская команда рассчитала, что возможен сценарий с тремя горячими точками: двумя южными овальными и одним круглым вблизи вращающегося южного полюса.

Эти результаты подкрепляют предыдущие наблюдения и теории, предполагающие, что магнитные поля нейтронных звезд, которые в триллион раз сильнее, чем у Солнца, могут быть более сложными, чем обычно предполагается. Считается, что после формирования пульсары замедляют свое вращение на протяжении миллионов лет. Но если у них есть звезда-компаньон, вращающаяся вокруг них, они могут украсть материал и угловой момент у этого партнера, сильно ускорив свое вращение.

По мере того как вещество, вытянутое из компаньона, осаждается на внешнюю поверхность звезды, некоторые теоретики предполагают, что оно может воздействовать на слой подповерхностных нейтронов, создавая гигантские вихри, которые закручивают магнитное поле нейтронной звезды в странные структуры. Звезда-партнер в конечном счете может быть полностью поглощена или потерять столько массы, что стать гравитационно несвязанной и улететь, как это могло случиться с ныне одинокой J0030.

Работа продолжается

NICER продолжает наблюдать за J0030 для дальнейшего повышения точности измерения радиуса. В то же время, команда стала анализировать данные с второй цели, чуть более тяжелого пульсара, имеющего спутника в виде белого карлика. Другие астрономы использовали наблюдения орбитального танца этой пары для определения массы пульсара, что означает, что у команды NICER есть независимое измерение, которое они могут использовать для подтверждения своих выводов.

Также команда NICER планирует исследовать по меньшей мере пару пульсаров с большой массой, включая нынешнего рекордсмена — нейтронного «гиганта» с массой около 2.14 солнечных. Это должно позволить исследователям узнать верхний предел — точку, в которой нейтронная звезда коллапсирует в черную дыру. О физике, происходящей в недрах таких пограничных звезд, у ученых вообще нет никаких представлений.

Некоторые исследователи также предположили, что NICER может найти две нейтронные звезды с одинаковой массой, но разными радиусами. Это предполагает наличие точки перехода, в которой различия в начальных условиях создают два отличающихся друг от друга ядра. Например, одно из них может содержать в основном нейтроны, а другое состоять из более экзотического материала.

Хотя NICER находится в авангарде, это не единственный инструмент, который используется для изучения внутренностей пульсаров. В 2020 году американская Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) вместе с детектором Virgo в Италии уловила сигнал от двух нейтронных звезд, слившихся воедино после длительного гравитационного танца.

Когда объекты вращались вокруг друг друга до столкновения, они излучали гравитационные волны, которые содержали информацию о размерах и структуре этих звезд. Колоссальное гравитационное воздействие каждой звезды притягивало и деформировало ее партнера, превращая обе сферы в тела каплевидной формы. Искажения в последние моменты жизни нейтронных звезд дают физикам ключ к пониманию податливости материала внутри них.

Обсерватория LIGO зафиксировала второе столкновение нейтронных звезд в апреле прошлого года, и в любое время возможно обнаружение новых таких событий. До сих пор эти два слияния лишь намекали на свойства внутренних слоев нейтронных звезд, предполагая, что они не особенно деформируемы. Но нынешнее поколение установок не может наблюдать решающие заключительные моменты, когда деформация наиболее четко отображала бы условия внутри нейтронных звезд.

Ожидается, что гравитационно-волновой детектор Kamioka в Хиде, Япония, заработает позже в этом году, а индийская Обсерватория для гравитационно-волновых наблюдений вблизи Аундха-Наганатха, Маратхвада, в 2024 году. В сочетании с LIGO и Virgo они улучшат чувствительность, потенциально даже улавливая детали моментов, ведущих к столкновениям нейтронных звезд. В 2027 году планируется запуск европейско-китайского спутника eXTP, который будет изучать как изолированные, так и двойные нейтронные звезды, чтобы помочь определить их уравнение состояния.

Сердца нейтронных звезд, вероятно, всегда будут хранить различные секреты. Но физики в ближайшем будущем, похоже, вполне могут начать понимать их внутреннее устройство. «Это давняя головоломка, которая, как вы понимаете, никогда полностью не решится», — говорит Джоселин Рид, астрофизик из Университета штата Калифорния. «Теперь мы подошли к тому моменту, когда научное сообщество сможет ответить на основные вопросы о структуре нейтронных звезд в течение этого десятилетия».

iGuides в Telegram — t.me/igmedia iGuides в Яндекс.Дзен — zen.yandex.ru/iguides.ru

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: