Что-то странное происходит с Полярной звездой


Вещество нашей Вселенной структурно организовано и образует большое многообразие феноменов различного масштаба с весьма сильно разнящимися физическими свойствами. Одно из важнейших таких свойств – температура. Зная этот показатель и используя теоретические модели, можно судить о многих характеристиках того или иного тела – о его состоянии, строении, возрасте.

Разброс значений температуры у различных наблюдаемых компонентов Вселенной весьма велик. Так, самая низкая величина ее в природе зафиксирована для туманности Бумеранг и составляет всего 1 K. А каковы самые высокие температуры во Вселенной, известные на сегодняшний день, и о каких особенностях различных объектов свидетельствуют? Для начала посмотрим, как же ученые определяют температуру удаленных космических тел.

Спектры и температура

Всю информацию о далеких звездах, туманностях, галактиках ученые получают, исследуя их излучение. По тому, на какой частотный диапазон спектра приходится максимум излучения, определяется температура как показатель средней кинетической энергии, которой обладают частицы тела, – ведь частота излучения связана прямой зависимостью с энергией. Так что самая высокая температура во Вселенной должна отражать, соответственно, и наибольшую энергию.

Чем более высокими частотами характеризуется максимум интенсивности излучения, тем горячее исследуемое тело. Однако полный спектр излучения распределен по очень широкому диапазону, и по особенностям видимой его области («цвету») можно делать определенные общие выводы о температуре, например, звезды. Окончательная же оценка производится на основе изучения всего спектра с учетом полос эмиссии и поглощения.

Классификация звезд

Самая тяжелая звезда

Первое место на пьедестале самых массивных звезд Вселенной занимает R136a1, расположенная в туманности Тарантул. Эта область плазмы находится в галактике Большое Магелланово Облако, удаленной от Млечного пути на 163 тысячи световых лет.

R136a1 была открыта британский астрономом Полом Кроутером и его исследовательской группой в 2010 году. При изучении скопления RMC 136a они обнаружили объект невероятно больших размеров. Светило оказалось наиболее крупным в данном формировании, да и во всей наблюдаемой Вселенной.

Спектральные классы звезд

На основе спектральных особенностей, включая цвет, была разработана так называемая Гарвардская классификация звезд. Она включает семь основных классов, обозначаемых буквами O, B, A, F, G, K, M и несколько дополнительных. Гарвардская классификация отражает поверхностную температуру звезд. Солнце, фотосфера которого разогрета до 5780 K, относится к классу желтых звезд G2. Наиболее горячи голубые звезды класса O, самые холодные – красные – принадлежат классу M.

Гарвардскую классификацию дополняет Йеркская, или классификация Моргана-Кинана-Келлман (МКК – по фамилиям разработчиков), подразделяющая звезды на восемь классов светимости от 0 до VII, тесно связанных с массой светила – от гипергигантов до белых карликов. Наше Солнце – карлик класса V.

Примененные совместно, в качестве осей, по которым отложены значения цвет – температура и абсолютная величина – светимость (свидетельствующая о массе), они дали возможность построить график, широко известный как диаграмма Герцшпрунга-Рассела, на котором отражены главные характеристики звезд в их взаимосвязи.

Диаграмма Герцшпрунга - Рассела

Топ-10 гигантов

Объектов, крупнее Солнца в Метагалактике много. Мы перечислим лишь 10 самых больших звезд во Вселенной:

  • UY Щита.
  • VY Большого Пса – гипергигант одноименного созвездия, удаленного от Солнечной системы на 1170 парсек. Радиус составляет 2000 солнечных. По яркости превосходит наше светило в 270000 раз.
  • VV Цефея – двухкомпонентная звездная система в созвездии Цефея. Удалена от Земли на 5 тысяч световых лет. Относится к группе красных гипергигантов. В 1700 раз больше и в 200000 раз ярче Солнца.
  • MY Цефея – еще одна крупная звезда созвездия Цефея. Относится к группе красных гипергигантов. Радиус – 1600 солнечных.
  • V838 Единорога – удалена от Земли на 20000 световых лет. Обладает переменной светимостью. Размер меняется от 1200 до 1900 радиусов Солнца по данным разных групп исследователей.
  • WOH G64 – красный сверхгигант из созвездия Рыбы. До Солнечной системы свет от нее доходит за 163000 лет. Ее размер – 1540-2200 радиусов нашего светила, а светимость — 500000 Солнц.
  • V354 Цефея – больше Солнца в 690-1250 раз и ярче него в 400000 раз.
  • KY Лебедя – находится в одноименном созвездии, расположенном в 5 тысячах световых лет от Земли. Ее радиус – 1450 солнечных.
  • KW Стрельца – красный супергигант, превышающий наше светило в 1460 раз.
  • RW Цефея – ее размеры от 1250 до 1650 солнечных радиусов.

Самые горячие звезды

Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).

Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона – звезды Альнитак, – которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) – R136a1 в Большом Магеллановом облаке – оценена в 53 000 K.

Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.

Голубые гиганты в Плеядах

Альтернативный взгляд

В сознании рядового современного человека есть целый ряд незыблемых истин, которые стоят на его пути подобно монолитам и никогда не поддаются сомнению. Одна из них — знания о солнце, нашей единственной звезде, источнике света и тепла, благодаря которому на Земле существует жизнь.

Традиционная «анатомия» Солнца выглядит примерно так:

Учёные рассчитали среднюю температуру звезды — от 5 500 градусов Цельсия до 15 млн градусов по Кельвину. Но есть среди них скептики, которые утверждают, что эти данные не соответствуют истине: настоящая температура Солнца остаётся неизвестной, поскольку никому не удалось измерить этот показатель в непосредственной близости от светила.

Более того, во время солнечных вспышек космическая аппаратура неоднократно фиксировала выбросы холодного вещества, которое предваряло выбросы плазмы (что плохо согласуется с текущей теорией — говоря образно, ни в какие ворота не лезет). В силу этой и других причин часть физиков уверена в том, что на самом деле солнце холодное.

Этой теории как минимум 450 лет. Именно тогда Иоганн Кеплер считал, что «звезды вморожены в неподвижную твердь из льда». Продолжая эту мысль, известный астроном В. Гершель в 1795 г. писал, что «само Солнце – холодное, твердое, тёмное тело, окружённое двумя облачными слоями, самый внешний из которых, фотосфера, крайне раскален и ярок. Внутренний слой облаков, как своеобразный экран, защищает центральное ядро от действия жара».

В 1937 году инженер Исайя Араужо Серпос опубликовал свой труд под названием «Электромагнитная теория холодного Солнца: анализ новой структуры Вселенной», в котором громко заявил: наша звезда на самом деле такая же планета, как и все остальные, только очень крупная, и на ней могут жить какие-то биологические формы. Инженер пришёл к выводу о том, что солнечный свет имеет не термоядерную, а электромагнитную природу, и наша планета сама себя «отапливает», удерживая тепло благодаря атмосфере.

Рекламное видео:
02:47 Теория «холодного» Солнца. Наша звезда как обитаемая планета

В сознании рядового современного человека есть целый ряд незыблемых истин, которые стоят на его пути подобно монолитам и никогда не поддаются сомнению. Одна из них — знания о солнце, нашей единственной звезде, источнике света и тепла, благодаря которому на Земле существует жизнь.

Традиционная «анатомия» Солнца выглядит примерно так:

Учёные рассчитали среднюю температуру звезды — от 5 500 градусов Цельсия до 15 млн градусов по Кельвину. Но есть среди них скептики, которые утверждают, что эти данные не соответствуют истине: настоящая температура Солнца остаётся неизвестной, поскольку никому не удалось измерить этот показатель в непосредственной близости от светила.

Более того, во время солнечных вспышек космическая аппаратура неоднократно фиксировала выбросы холодного вещества, которое предваряло выбросы плазмы (что плохо согласуется с текущей теорией — говоря образно, ни в какие ворота не лезет). В силу этой и других причин часть физиков уверена в том, что на самом деле солнце холодное.

Этой теории как минимум 450 лет. Именно тогда Иоганн Кеплер считал, что «звезды вморожены в неподвижную твердь из льда». Продолжая эту мысль, известный астроном В. Гершель в 1795 г. писал, что «само Солнце – холодное, твердое, тёмное тело, окружённое двумя облачными слоями, самый внешний из которых, фотосфера, крайне раскален и ярок. Внутренний слой облаков, как своеобразный экран, защищает центральное ядро от действия жара».

В 1937 году инженер Исайя Араужо Серпос опубликовал свой труд под названием «Электромагнитная теория холодного Солнца: анализ новой структуры Вселенной», в котором громко заявил: наша звезда на самом деле такая же планета, как и все остальные, только очень крупная, и на ней могут жить какие-то биологические формы. Инженер пришёл к выводу о том, что солнечный свет имеет не термоядерную, а электромагнитную природу, и наша планета сама себя «отапливает», удерживая тепло благодаря атмосфере.

Наш с вами современник Джонатан Кохейн, профессор физики и астрономии, специалист по космическим энергиям, неоднократно заявлял, что официальная наука манипулирует нами и скрывает правду о Солнце, которое в действительности не такое горячее.

Свою теорию он подтверждает простым примером: когда космический корабль долетает до самых верхних слоёв атмосферы, космонавты видят, что эти слои полностью тёмные, то есть снаружи ничем не освещаются. Также Кохейн пишет о том, что между Солнцем и Землёй существует магнитное поле, которое при условии сверхвысоких температур звезды было бы невозможным.

И этот учёный не одинок. В 2015-м году российский учёный Юрий Бадьин опубликовал очень интересную иллюстрированную книгу «Солнце — холодное тело с горячей фотосферой. Механизм гравитации», где высказал предположение о «холодильнике» внутри нашей звезды.

Подобных утверждений достаточно много. И люди, которые выдвигают смелые идеи, уверены в своей правоте. Одни любознательные умы фантазируют о том, что на Солнце есть своя разумная жизнь, другие считают, что наша звезда является порталом в иную вселенную или другое измерение.

Так или иначе, попытки восстановить справедливость предпринимаются постоянно. Но в случае с Солнцем проверить их на практике очень сложно и очень дорого. Отсюда большое количество всевозможных теорий, которые вращаются вокруг истины, как хоровод аборигенов вокруг костра, — не прикасаясь к пламени.

Автор: Елена Муравьёв

Термоядерные топки космоса

В ядрах массивных звезд, стиснутых колоссальным давлением, развиваются действительно высокие температуры, достаточные для нуклеосинтеза элементов вплоть до железа и никеля. Так, расчеты для голубых гигантов, сверхгигантов и очень редких гипергигантов дают для этого параметра к концу жизни звезды порядок величины 109 K – миллиард градусов.

Строение и эволюция подобных объектов пока еще недостаточно хорошо изучены, соответственно и модели их еще далеко не полны. Ясно, однако, что очень горячими ядрами должны обладать все звезды больших масс, к каким бы спектральным классам они ни принадлежали, – например, красные сверхгиганты. Несмотря на несомненные различия в процессах, протекающих в недрах звезд, ключевым параметром, определяющим температуру ядра, является масса.

Когда появятся холодные звезды?

В недавней работе, представленной исследователями Фредом Адамсом и Грегори Лафлином, была дана оценка характеристик холодных звезд. Ученые считают, что подобные объекты могут начать образовываться в сравнительно недалеком будущем. Для этого не нужны будут триллионы и триллионы лет. Некоторые из подобных звезд могут возникать в результате столкновений между субзвездными объектами. Их называют коричневыми карликами. Они немного крупнее планет, но слишком малы, чтобы стать звездами и сиять как они.

Холодные звезды, несмотря на свою низкую температуру, теоретически будут иметь массу, достаточную для поддержания реакции ядерного синтеза. Но ее энергии будет недостаточно, чтобы излучать в космос. Атмосфера, которую будут иметь холодные звезды, может быть полна ледяных облаков. Их небольшое ядро будет излучать совсем небольшое количество энергии. Если бы они сформировались именно так, как предсказывается теоретически, они бы больше были похожи на коричневых карликов, чем на настоящие звезды.

Звездные остатки

От массы в общем случае зависит и судьба звезды – то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, – белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.

Иллюстрация нейтронной звезды

Гигантские звезды ждет иная судьба – взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 1011 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда – очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч – до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда – не то место, где температура – самая высокая во Вселенной.

Самая большая звезда в нашей галактике

С самой большой известной звездой во Вселенной мы разобрались. Но она находится далеко от Земли и без помощи хорошей оптики ее невозможно обнаружить на ночном небе. В нашей галактике тоже есть великаны. Возглавляет их список Эта Киля. Этот необычный объект является системой двух объектов, вращающихся вокруг общего центра тяжести.

Крупнейшая звезда Млечного пути расположена в созвездии Киля, которое можно наблюдать в южном полушарии звездного неба. Свет от нее до Земли доходит за 7500 лет.

Далекие экзотические объекты

Существует класс космических объектов, достаточно удаленных (а значит, и древних), характеризующихся совершенно экстремальными температурами. Это квазары. По современным воззрениям, квазар представляет собой сверхмассивную черную дыру, обладающую мощным аккреционным диском, образуемым падающим на нее по спирали веществом – газом или, точнее, плазмой. Собственно, это активное галактическое ядро в стадии формирования.

Скорость движения плазмы в диске настолько велика, что вследствие трения она разогревается до сверхвысоких температур. Магнитные поля собирают излучение и часть вещества диска в два полярных пучка – джета, выбрасываемых квазаром в пространство. Это чрезвычайно высокоэнергетический процесс. Светимость квазара в среднем на шесть порядков выше светимости самой мощной звезды R136a1.

Квазар в представлении художника

Теоретические модели допускают для квазаров эффективную температуру (то есть присущую абсолютно черному телу, излучающему с той же яркостью) не более 500 миллиардов градусов (5×1011 K). Однако недавние исследования ближайшего квазара 3C 273 привели к неожиданному результату: от 2×1013 до 4×1013 K – десятки триллионов кельвинов. Такая величина сравнима с температурами, достигающимися в явлениях с наивысшим известным энерговыделением – в гамма-всплесках. На сегодняшний день это самая высокая температура во Вселенной, которая была когда-либо зарегистрирована.

Конец Вселенной

В описываемом отдаленном будущем самые большие звезды будут только в 30 раз больше массы нашего светила. Для сравнения: самые большие известные на сегодня звезды в 300 раз больше по массе, чем Солнце. Предполагается, что в описываемое время в среднем звезды будут намного меньше. Примерно в 40 раз меньше массы Юпитера. Они будут иметь незначительное количество водорода и гелия в своем составе. По словам Адамса и Лафлина, в этом холодном и далеком будущем, после того как Вселенная вообще перестанет образовывать звезды, оставшиеся крупные объекты будут в основном белыми, коричневыми, нейтронными звездами и черными дырами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Рассказать всей Вселенной!

Жарче всех

Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.

Первые звезды в ранней Вселенной

Если вернуться к самому моменту ее рождения — приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, — мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.

Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10-43 секунд. Самый горячий объект в эту эпоху – сама наша Вселенная, с планковской температурой 1,4×1032 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.

Крупнейшая звезда из известных

Название самой большой звезды во Вселенной — UY Щита (по-латыни — UY Scuti). Она находится в одноименном созвездии в 9,5 тысячах световых лет от Солнечной системы. Гигантский объект был открыт еще в 1860 году астрономами из немецкого города Бонн.

UY Щита

Физические параметры

Самая огромная звезда во Вселенной имеет радиус, превышающий солнечный в 1708 раз. А на пике пульсации она расширяется до 1900 Солнц. Но, несмотря на свои гигантские размеры, UY Щита достаточно легковесна. Она постоянно теряет большое количество вещества и на данный момент ее масса равняется массе десяти Солнц.

По яркости UY Щита вторая во всем космическом пространстве. По этому показателю она превышает наше светило в 340 тысяч раз. Но вокруг нее скопилось столько газа и пыли, что ее невозможно разглядеть на небе невооруженным глазом (11 уровень видимой звёздной величины). При этом ее блеск непостоянен, что делает UY Щита переменным светилом.

Самые переменные звезды

Звезды

Яркость многих звезд сильно колеблется, если смотреть на них с Земли. Они известны как переменные звезды. Их много: в одной только галактике Млечный Путь насчитано около 45 000 таких.

По словам профессора астрофизики Коэля Хелье, самыми переменными из таких звезд являются катаклизмические, или взрывные, переменные звезды. Их яркость может увеличиваться на фактор 100 в течение дня, уменьшаться, снова увеличиваться и так далее. Такие звезды пользуются популярностью у астрономов-любителей.

Сегодня у нас есть хорошее понимание того, что происходит с катаклизмическими переменными звездами. Они представляют собой бинарные системы, в которых одна звезда — обычная, а другая представляет собой белый карлик. Материя обычной звезды падает на аккреционный диск, который вращается вокруг белого карлика. После того как масса диска будет достаточно высокой, начинается синтез, в результате чего наблюдается увеличение яркости. Постепенно синтез иссякает и процесс начинается снова. Иногда белый карлик разрушается. Вариантов развития хватает.

Самые крупные звезды

Бетельгейзе

Несмотря на огромную массу, R136a1 — не самая большая звезда (по размерам). Есть много звезд побольше, и все они красные сверхгиганты — звезды, которые всю жизнь были намного меньше, пока не закончился водород, не начал синтезироваться гелий, не началось повышение температуры и расширение. Наше Солнце в конечном итоге тоже ожидает такая судьба. Водород закончится и светило расширится, превратившись в красный гигант. Чтобы стать красным сверхгигантом, звезде нужно быть в 10 раз массивнее, чем наше Солнце. Фаза красного сверхгиганта обычно короткая, длится всего от нескольких тысяч до миллиарда лет. Это немного по астрономическим меркам.

Наиболее известные красные сверхгиганты — это Альфа Антареса и Бетельгейзе, однако и они довольно малы по сравнению с самыми крупными. Найти самый большой красный сверхгигант — весьма бесплодная затея, потому что точные размеры таких звезд весьма трудно оценить наверняка. Самые крупные должны быть в 1500 раза шире Солнца, а может и больше.

Самые необычные звезды

Звезда

Некоторые виды звезд весьма необычны. Они необязательно должны отличаться экстремальными характеристиками вроде светимости или массы, они просто странные.

Как, например, объекты Торна-Житков. Названы они в честь физиков Кипа Торна и Анны Житков, которые впервые предположили их существование. Их идея заключалась в том, что нейтронная звезда может стать ядром красного гиганта или сверхгиганта. Идея невероятная, но… такой объект недавно был обнаружен.

Иногда две большие желтые звезды кружат настолько близко друг к другу, что независимо от материи, которая находится между ними, похожи на гигантский космический арахис. Известны только две такие системы.

Звезда Пшибыльского иногда приводится как пример необычной звезды, потому что ее звездный свет отличается от света любой другой звезды. Астрономы измеряют интенсивность каждой длины волны, чтобы выяснить, из чего состоит звезда. Обычно это не вызывает затруднений, однако ученые до сих пор пытаются понять спектр звезды Пшибыльского.

По материалам listverse.com

Как долго может жить звезда? Для начала давайте определимся: под временем жизни звезды мы подразумеваем ее способность осуществлять ядерный синтез. Потому что «труп звезды» может долго висеть и после окончания синтеза.

Как правило, чем менее массивна звезда, тем дольше она будет жить. Звезды с наименьшей массой — это красные карлики. Они могут быть с массой от 7,5 до 50 процентов солнечной. Все, что менее массивно, не может совершать ядерный синтез — и не будет звездой. Современные модели предполагают, что самые мелкие красные карлики могут светить до 10 триллионов лет. Сравните это с нашим Солнцем, синтез в котором будет длиться приблизительно 10 миллиардов лет — в тысячу раз меньше. После синтеза большей части водорода, согласно теории, легкий красный карлик станет голубым карликом, а когда остатки водорода будут исчерпаны, синтез в ядре остановится, и карлик станет белым.

Самые переменные звезды

Яркость многих звезд сильно колеблется, если смотреть на них с Земли. Они известны как переменные звезды. Их много: в одной только галактике Млечный Путь насчитано около 45 000 таких.

По словам профессора астрофизики Коэля Хелье, самыми переменными из таких звезд являются катаклизмические, или взрывные, переменные звезды. Их яркость может увеличиваться на фактор 100 в течение дня, уменьшаться, снова увеличиваться и так далее. Такие звезды пользуются популярностью у астрономов-любителей.

Сегодня у нас есть хорошее понимание того, что происходит с катаклизмическими переменными звездами. Они представляют собой бинарные системы, в которых одна звезда — обычная, а другая представляет собой белый карлик. Материя обычной звезды падает на аккреционный диск, который вращается вокруг белого карлика. После того как масса диска будет достаточно высокой, начинается синтез, в результате чего наблюдается увеличение яркости. Постепенно синтез иссякает и процесс начинается снова. Иногда белый карлик разрушается. Вариантов развития хватает.

Самые необычные звезды

Некоторые виды звезд весьма необычны. Они необязательно должны отличаться экстремальными характеристиками вроде светимости или массы, они просто странные.

Как, например, объекты Торна-Житков. Названы они в честь физиков Кипа Торна и Анны Житков, которые впервые предположили их существование. Их идея заключалась в том, что нейтронная звезда может стать ядром красного гиганта или сверхгиганта. Идея невероятная, но… такой объект недавно был обнаружен.

Иногда две большие желтые звезды кружат настолько близко друг к другу, что независимо от материи, которая находится между ними, похожи на гигантский космический арахис. Известны только две такие системы.

Звезда Пшибыльского иногда приводится как пример необычной звезды, потому что ее звездный свет отличается от света любой другой звезды. Астрономы измеряют интенсивность каждой длины волны, чтобы выяснить, из чего состоит звезда. Обычно это не вызывает затруднений, однако ученые до сих пор пытаются понять спектр звезды Пшибыльского.

Самые крупные звезды

Несмотря на огромную массу, R136a1 — не самая большая звезда (по размерам). Есть много звезд побольше, и все они красные сверхгиганты — звезды, которые всю жизнь были намного меньше, пока не закончился водород, не начал синтезироваться гелий, не началось повышение температуры и расширение. Наше Солнце в конечном итоге тоже ожидает такая судьба. Водород закончится и светило расширится, превратившись в красный гигант. Чтобы стать красным сверхгигантом, звезде нужно быть в 10 раз массивнее, чем наше Солнце. Фаза красного сверхгиганта обычно короткая, длится всего от нескольких тысяч до миллиарда лет. Это немного по астрономическим меркам.

Наиболее известные красные сверхгиганты — это Альфа Антареса и Бетельгейзе, однако и они довольно малы по сравнению с самыми крупными. Найти самый большой красный сверхгигант — весьма бесплодная затея, потому что точные размеры таких звезд весьма трудно оценить наверняка. Самые крупные должны быть в 1500 раза шире Солнца, а может и больше.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: